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We model demand for noninstrumental information, drawing on the
idea that people derive entertainment utility from suspense and sur-
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prise. A period has more suspense if the variance of the next period’s
beliefs is greater. A period has more surprise if the current belief is
further from the last period’s belief. Under these definitions, we ana-
lyze the optimal way to reveal information over time so as to maximize
expected suspense or surprise experienced by a Bayesian audience. We
apply our results to the design of mystery novels, political primaries,
casinos, game shows, auctions, and sports.
ntroduction
People frequently seek noninstrumental information. They follow in-
ternational news and sports even when no contingent actions await. We
postulate that a component of this demand for noninstrumental infor-
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mation is its entertainment value. It is exciting to refresh the New York
Times webpage to find out whether Gaddafi has been captured and to

216 journal of political economy
watch a baseball pitch with full count and bases loaded.
In this paper, we formalize the idea that information provides enter-

tainment and we analyze the optimal way to reveal information over time
so as to maximize expected suspense or surprise experienced by a ra-
tional Bayesian audience. Our analysis informs two distinct sets of issues.
First, in a number of industries, provision of entertainment is a crucial

service. Mystery novels, soap operas, sports events, and casinos all create
value by revealing information over time in a manner that makes the ex-
perience more exciting. Of course, in each of these cases, information
revelation is bundled with other valuable features of the good—elegant
prose, skilled acting, impressive athleticism, attractive waitstaff—but in-
formation revelation is the common component of these seemingly dis-
parate industries. Moreover, entertainment is an important part of mod-
ern life. The American Time Use Survey reveals that adults in the United
States spend roughly one-fifth of their waking hours consuming enter-
tainment ðAguiar, Hurst, and Karabarbounis 2011Þ.
Second, even if obtained for noninstrumental reasons, information

can have substantial social consequences. Consider politics. As Downs
ð1957Þ has emphasized, the efficacy of democratic political systems is
limited by voters’ ignorance. This is particularly problematic because
individual voters, who are unlikely to be pivotal, have little instrumental
reason to obtain information about the candidates. Despite this lack of a
direct incentive, many voters do in fact follow political news and watch
political debates, thus becoming an informed electorate. A potential
explanation is that the political process unfolds in a way that generates
enjoyable suspense and surprise. Developing models of entertainment-
based demand for noninstrumental information will thus inform the
analysis of social issues, such as voting, that seem unrelated to entertain-
ment.
In our model, there is a finite state space and a finite number of pe-

riods. The principal ðthe designerÞ reveals information about the state
to the agent ðthe audienceÞ over time. Specifically, the principal chooses
the information policy: signals about the state, contingent on the cur-
rent period and the current belief. The agent observes the realization of
each signal and forms beliefs by Bayes’s rule. The agent has preferences
over the stochastic path of his beliefs. A period generates more suspense
if the variance of next period’s beliefs is greater. A period generates
more surprise if the current belief is further from last period’s belief.
The agent’s utility in each period is an increasing function of suspense
or surprise experienced in that period, and the principal seeks to max-
imize the expected undiscounted sum of per-period utilities.
This content downloaded from 128.192.114.19 on Sun, 7 Jun 2015 15:04:34 PM
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To fix ideas, consider figure 1. We plot the path of estimated beliefs
about the winners of the 2011 US Open Semifinals over the course of
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these two tennis matches. Panel a shows Djoković versus Federer and
panel b shows Murray versus Nadal.1 The match between Djoković and
Federer was exciting, with dramatic lead changes and key missed op-
portunities; Federer had multiple match points but went on to lose.
In contrast, there was much less drama between Murray and Nadal as
Nadal dominated from the outset. Our model formalizes the notion
that Federer-Djoković generated more suspense and more surprise than
Murray-Nadal.
We consider the problem of designing an optimal information pol-

icy, subject to a given prior and number of periods. We show that the
suspense-optimal policy leads to decreasing residual uncertainty over
time. Suspense is constant across periods and there is no variability in
ex post suspense. This constant suspense is generated by asymmetric
belief swings—“plot twists”—that become larger and less likely as time
passes. The state is not fully revealed until the final period. One impli-
cation of our results is that most existing sports cannot be suspense-
optimal; we offer specific guidance on rules that wouldmake sports more
suspenseful.
Assuming additional structure, we also study the information policy

that maximizes expected surprise. Under this policy, residual uncer-
tainty may go up or down over time. Surprise in each period is variable,
as is the ex post total surprise. In contrast to the suspense-optimal policy,
when there are many periods, the beliefs shift only a small amount in
each period. There is a positive probability that the state is fully revealed
before the final period. These features imply that a surprise-optimizing
principal faces substantial commitment problems.
The previous results apply to the setting in which the principal has

no constraints on the technology by which she reveals information to the
agent. We also briefly consider some specific constrained problems such
as seeding teams in a tournament, determining the number of games
in a finals series, and ordering sequential contests such as political pri-
maries.
Our paper connects with four lines of research. It primarily contrib-

utes to the nascent literature on the design of informational environ-
ments. Kamenica and Gentzkow ð2011Þ consider a static version of our
model in which a principal chooses an arbitrary signal to reveal to an

1 We estimate the likelihood of victory given the current score using a simple model that

assumes that the serving player wins the point with probability .64 ðthe overall fraction of
points won by serving players in the tournamentÞ. The data and methodology are drawn
from jeffsackmann.com.
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agent, who then takes an action that affects the welfare of both players.2

In that case, the principal has a value function over the agent’s single

cases of this static model.
3 A separate literature posits that agents have a direct preference for particular belief

ðe.g., Akerlof and Dickens 1982Þ; a number of papers analyze whether such preference
lead to demand for noninstrumental information ðe.g., Eliaz and Spiegler 2006; Eliaz and
Schotter 2010Þ.

FIG. 1.—2011 US Open Semifinals
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period posterior;3 our principal has a value function over the agent’s
multiperiod belief martingale. In this sense our model shares features
with that of Hörner and Skrzypacz ð2011Þ, who study a privately informed
agent who is selling information to an investor. A scheme in which the
agent sells information gradually maximizes the agent’s ex ante incen-
tives to acquire information.
In a broader sense, our paper also contributes to the literature on

microfoundations of preferences. Stigler and Becker ð1977Þ advocate a
research agenda of decomposing seemingly fundamental preferences
into their constituent parts. This approach has been applied in a variety
of settings, for example, to demand for advertised ðBecker and Murphy
1993Þ and addictive ðBecker and Murphy 1988Þ goods. We apply it to
drama-based entertainment. At first glance it may seem that the ques-
tion of why one mystery novel is more enjoyable than another or the
question of what makes a sports game exciting is outside the purview of
economics; such judgments may seem based on tastes that are inscru-
table, like the preference for vanilla over chocolate ice cream. As our
analysis reveals, however, reconceptualizing these judgments as being
ðpartlyÞ based on a taste for suspense and surprise reveals new insights
about entertainment and demand for noninstrumental information more
generally.
Third, our paper contributes to the literature on preferences over the

timing of resolution of uncertainty. The original treatment of this sub-
ject goes back to Kreps and Porteus ð1978Þ. They axiomatize a repre-

2 Brocas and Carrillo ð2007Þ, Rayo and Segal ð2010Þ, and Tamura ð2012Þ examine special
s
s
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sentation of preferences for early or late resolution. Caplin and Leahy
ð2001Þ apply this framework to a setting in which individuals have pref-
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erences over anticipatory emotions. They point out that agents might
bet on their favorite team so as to increase the amount of suspense they
will experience while watching a sports game. Köszegi and Rabin ð2009Þ
and Dillenberger ð2010Þ model agents who prefer one-shot rather than
gradual revelation of information.
Finally, there is a small formal literature on suspense and surprise per

se.4 Chan, Courty, and Li ð2009Þ define suspense as valuing contestants’
efforts more when a game is close and demonstrate that preference for
suspense increases the appeal of rank-order incentive schemes over lin-
ear ones. The definition of surprise of Geanakoplos ð1996Þ is similar to
ours. He considers a psychological game ðGeanakoplos, Pearce, and Stac-
chetti 1989Þ in which a principal wants to surprise an agent.5 Specifically,
he examines the hangman’s paradox ðGardner 1969Þ, the problem of
choosing a date on which to hang a prisoner so that the prisoner is sur-
prised. In his setting, the principal has no commitment power, so surprise
is not possible in equilibrium. Borwein, Borwein, and Maréchal ð2000Þ
give the principal commitment power and derive the surprise-optimal
probabilities for hanging at each date.6 Itti and Baldi ð2009Þ propose a
definition of surprise based on the relative entropy between the posterior
and the prior and provide evidence that this measure of surprise attracts
attention.
The remainder of the paper is structured as follows. Section II pre-

sents the model. Section III discusses the interpretation of the model.
Section IV and Section V derive the suspense- and surprise-optimal in-
formation policies. Section VI compares these policies. Section VII con-
siders constrained problems. Section VIII discusses some generalizations
of the model, and Section IX presents conclusions.

II. A Model of Suspense and Surprise
We develop a model in which a principal reveals information over time
about the state of the world to an agent.

4
 The related concept of curiosity has also been analyzed as a potential source of de-
mand for noninstrumental information. See Loewenstein ð1994Þ, Kang et al. ð2009Þ, or
Golman and Loewenstein ð2012Þ.

5 Brams ð1994Þ proposes that economists analyze the interaction of an author and reader
as a psychological game, where the reader’s pleasure or disappointment at a surprise end-
ing depends on his expectations about the book.

6 Let pt denote the conditional probability of being hanged on day t, given that the
prisoner is still alive. They define surprise in period t as 2log pt if the prisoner is hanged
and zero otherwise.
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A. Preferences, Beliefs, and Technology

220 journal of political economy
There is a finite state space Q. A typical state is denoted q. A typical belief
is denoted by m ∈ DðQÞ; mq designates the probability of q. The prior is m0.
Let t ∈ f0, 1, . . . , Tg denote the period.
A signal p is a pair consisting of a finite signal realization space S and a

map from Q to DðSÞ. An information policy ~p is a function that maps the
current period and the current belief into a signal. Let ~P denote the set
of all information policies.7

Any information policy generates a stochastic path of beliefs about the
state. A belief martingale ~m is a sequence ð~mtÞTt50 such that ðiÞ ~mt ∈ DðDðQÞÞ
for all t, ðiiÞ ~m0 is degenerate at m0, and ðiiiÞ E ½~mt jm0; : : : ; mt21�5 mt21 for
all t ∈ f1, . . . , Tg. A realization of a belief martingale is a belief path
h5 ðmtÞTt50. A Markov belief martingale has the property that ~mt11 de-
pends only on mt . Throughout the rest of the paper, whenever we refer
to belief martingales, we mean Markov.
Given the current belief mt , a signal induces a distribution of posteriors

~mt11 such that E ½~mt11�5 mt . An information policy induces a belief mar-
tingale.8 We denote the belief martingale induced by information policy
~p ðgiven the prior m0Þ by h~pjm0i.
There are two players: the agent and the principal. The agent has

preferences over his belief path and the belief martingale. The agent has
a preference for suspense if his utility function is

Ususpðh; ~mÞ5 o
T21

t50

u
�
Et o

q

ð~mq

t11 2 mq

t Þ2
�

for some increasing, strictly concave function uð�Þ with uð0Þ 5 0. An
agent has a preference for surprise if his utility function is

UsurpðhÞ5 o
T

t51

u
�
o
q

ðmq

t 2 mq

t21Þ2
�

for some increasing, strictly concave function uð�Þ with uð0Þ 5 0. So sus-
pense is induced by variance over the next period’s beliefs and surprise
by change from the previous belief to the current one. In Section VIII,
we discuss potential alternative definitions of suspense and surprise.
We will frequently focus on the baseline specification, where suspense is

the standard deviation of ~mt11 ðaggregated across statesÞ and surprise is

7 The assumption that S is finite is innocuous since Q is finite.

8 The assumption that ~p depends only on the current belief and period, and thus

induces a Markov martingale, is without loss of generality in the sense that memoryless
policies do not restrict the set of feasible payoffs. If payoffs were not time separable, it
might be beneficial to employ history-dependent information policies that could induce
non-Markov martingales.
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the Euclidean distance between mt and mt21. This corresponds to setting
uðxÞ5 ffiffiffi

x
p

.

suspense and surprise 221
The principal chooses the information policy to maximize the agent’s
expected utility. If the agent has a preference for suspense, the principal
solves

max
~p∈ ~P

Eh~pjm0iUsuspðh; h~pjm0iÞ:

If the agent has a preference for surprise, the principal solves

max
~p∈ ~P

Eh~pjm0iUsurpðhÞ:

Note that the choice of the information policy affects the value of the
objective function only through the belief martingale it induces. The ad-
ditional details of the information policy are irrelevant for payoffs. Thus,
it is convenient to recast the optimization problem as a direct choice of
the belief martingale. An extension of the argument in proposition 1 of
Kamenica and Gentzkow ð2011Þ shows that any Markov belief martingale
can be induced by some information policy.9

Lemma 1. Given any Markov belief martingale ~m, there exists an in-
formation policy ~p such that ~m5 h~pjm0i.
In some settings the set of feasible information policies might be

limited by tradition, complexity, or other institutional constraints. For
example, the organizer of a tournament may have settled on an elimi-
nation format and is choosing between seeding procedures. Or a po-
litical party respects the rights of states to choose their own delegates but
may have control over the order in which states hold elections. Ac-
cordingly, let P ⊂ ~P � ðDQÞ �N be a subset of the Cartesian product of
information policies, priors, and durations. In Section VII we consider a
constrained model in which the principal chooses ð~p; m0; T Þ ∈ P so as to
maximize expected suspense or surprise.

B. Extensions
There are some natural extensions to our specification of the agent’s
utility function. First and most obvious, the audience might value both
suspense and surprise. While we cannot fully characterize the optimal
information policy for such preferences, we discuss the trade-off be-
tween suspense and surprise in Section VI.
Second, the audience may experience additional utility from the re-

alization of a particular state. For example, a sports fan may first and

9 Kamenica and Gentzkow show in a static model that when current belief is mt , any
distribution of posteriors ~mt11 with mean mt can be induced by some signal. Applying this

result period by period yields our lemma 1.
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foremost wish for her team to win. But conditional on the outcome,
more suspenseful or surprising games are more enjoyable. We can easily

222 journal of political economy
incorporate this in our model by supposing that the overall utility is a
sum of the utility from suspense/surprise and a utility from the reali-
zation of a state. Such a modification does not affect the optimal policy;
it changes only the payoff-maximizing prior. In fact, our model can be
interpreted as describing the agent’s preferences over her belief dy-
namics conditional on already having an interest in the outcome. When
the agent has nothing at stake and does not care about the outcome,
there is little scope for suspense and surprise.10

Third, the audience would presumably have a distinct preference for
learning the outcome by the end, that is, from having mT degenerate.
Including this term in the utility function would not have any effect on
our results since any suspense- or surprise-maximizing policy reveals the
state by the last period.
Fourth, one may consider models with state-dependent significance in

which the audience cares more about changes in the likelihood of par-
ticular states. For instance, the reader of a mystery novel may be in great
suspense about whether the protagonist committed the murder. But in
the event of the protagonist’s innocence, she cares less about whether
the murderer was stooge A or stooge B. Or, if the New York Yankees
have five times the audience of the Milwaukee Brewers, the league may
value suspense/surprise about the Yankees’ championship prospects
five times as much as suspense about the Brewers. We can accordingly
modify suspense utility to be

Ususpðh; ~mÞ5 o
T21

t50

u
�
Et o

q

aq � ð~mq

t11 2 mq

t Þ2
�
;

and likewise for surprise. More important characters or larger-market
sports teams have a larger state-dependent weight aq ≥ 0.
Fifth, the audience might weight suspense and surprise differently

across periods. For example, later periods might be weighted more heav-
ily if the reader becomes more invested in the characters as she ad-
vances through the novel. In models with time-dependent significance, we
replace suspense utility with

Ususpðh; ~mÞ5 o
T21

t50

btu
�
Et o

q

ð~mq

t11 2 mq

t Þ2
�
;

10
 The interaction between the stakes and the preference for suspense or surprise might
be nonmonotonic. If the stakes are too high, the agent will not be in the mood for en-
tertainment ðe.g., when awaiting the outcome of a surgeryÞ. These considerations are
particularly important when stakes are endogenous ðe.g., in a gambling contextÞ.
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and again likewise for surprise. A period in which the audience is
more involved has a higher value of b ≥ 0. In Section IV, we discuss the

suspense and surprise 223
t

suspense-optimal information policies in cases of state- or time-dependent
significance.
Finally, sometimes the agent might be invested only in some aspect of

her belief such as the expectation. Consider a gambler who plays a se-
quence of fair gambles and experiences suspense ðor surpriseÞ when her
expected earnings from the visit are about to change ðor just didÞ. For-
mally, q is a bounded random variable and the agent has preferences
over the path of its expectation; for example, in the case of surprise, an
agent’s utility in period t is uðEmt

½q�2 Emt21
½q�Þ2. While we will not discuss

this extension at length, all our results apply in this case as well.

III. The Interpretation of the Model
Before we proceed with the derivation of optimal information policies,
we discuss some of the potential interpretations of the model above.

A. Interpretation of the Technology
Suppose that the principal is a publishing house and the agent is a
reader of mystery novels. In this case, a writer is associated with a belief
martingale, and a particular book by writer ~m is a belief path h drawn
from ~m. For a concrete example, say that Mrs. X is a writer and all of her
books follow a similar premise. In the opening pages of the novel, a dead
body is found at a remote country house where n guests and staff are
present. In every novel by Mrs. X, one of these n individuals single-
handedly committed the murder.11 The opening pages establish a prior
m0 over the likelihood that each individual q ∈ Q is the culprit. There are
then T chapters each revealing some information about the identity of
the murderer. A literal ðthough perhaps not very literaryÞ interpretation
is that Mrs. X explicitly randomizes the plot of each chapter on the basis
of her information policy and her current belief ðbased on the content
she has written thus farÞ and learns whodunit only when she completes
the novel.12

11 In Mrs. X’s novels, it is never the case that the murderer is someone the reader has not

been introduced to at the outset. This allows us to model uncertainty in a classical way
without addressing issues of unawareness. We could easily allow, however, for the possibil-
ity that the murder was really a suicide ðchange n to n 1 1Þ or, as in Murder on the Orient
Express, that ðspoiler alertÞ several of the suspects jointly committed the murder ðchange n
to 2n2 1Þ.

12 This interpretation brings to mind the notion of “willful characters.” For example,
novelist Jodi Picoult writes, “Often, about 2/3 of the way through, the characters will take
over and move the book in a different direction. I can fight them, but usually when I do
that the book isn’t as good as it could be. It sounds crazy, but the book really starts writing
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Alternatively, the principal is the rule-setting body of a sports associ-
ation and the agent is a sports fan. In this case, we associate the feasible

224 journal of political economy
set of rules with some constraint set P, the chosen rule with an informa-
tion policy ~p, a matchup with a prior and a belief martingale h~pjm0i, and
a match with a belief path h. To see how modifying the rules changes
the information policy, note that if it becomes more difficult to score
as players get tired, rules that permit fewer substitutions increase the
amount of information that is revealed in the earlier periods. Or, if it is
easier to score when fewer players are on the field, rules that lower the
threshold for issuing red cards may reveal more information later in the
game. The rules of a sport also affect priors and belief martingales
through the players’ strategic responses to such rules. For instance, ac-
tions with low expected value but high variance may be played at the end
of the game but will never be played at the beginning, for example, two-
point conversions in football. Allowing such actions can alter the relative
amount of information revealed early versus late. Different rules might
also induce different priors. For instance, a worse tennis player will have a
higher chance of winning under the tie-break rule for deciding sets.
Our model captures both settings in which the state is realized ex ante

and those in which it is realized ex post. An example in which q is re-
alized ex ante is a game show in which a contestant receives either an
empty or a prize-filled suitcase and then information is slowly revealed
about the suitcase’s contents. In presidential primaries, on the other
hand, q is realized ex post. Whichever candidate gets more than 50 per-
cent of the overall delegates wins the nomination. When a candidate
wins a state’s delegates, this outcome provides some information about
whether she will win the nomination. In this case, the state q is not an
aspect of the world that is fixed at the outset; it is determined by the
signal realizations themselves.
Implicit in our formal structure is the assumption that the principal

and the agent share a common language for conveying the informa-
tional content of a signal. For example, when the butler is found with a
bloody glove in chapter 2 of Mrs. X’s mystery novel, the reader knows to
update his beliefs on the butler’s guilt from ðsayÞ 27 percent to 51 per-
cent. This assumption goes hand in hand with the requirement that
beliefs are a martingale. If the reader believes that there is a 90 percent
chance that the butler did it, then the final chapter must reveal the
butler’s guilt 90 percent of the time. The principal is constrained by the
agent’s rationality.

itself after a while. I often feel like I’m just transcribing a film that’s being spooled in my

head, and I have nothing to do with creating it. Certain scenes surprise me even after I have
written them—I just stare at the computer screen, wondering how that happened” ðhttp://www
.jodipicoult.com.au/faq.htmlÞ.
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Like all writers of murder mysteries, Mrs. X faces a commitment prob-
lem. After giving a strong indication that the butler was the murderer,

suspense and surprise 225
in the last chapter she may want to reveal that it was the maid. This would
be very surprising. If rational readers expect Mrs. X to play tricks of this
sort, though, they will not believe any early clues and thus their beliefs
will not budge from the prior until the very last paragraph.
In our model, Mrs. X can in fact send meaningful signals to the au-

dience. The reason is that Mrs. X can commit to following her infor-
mation policy even when doing so results in lower ex post utility for the
reader. She can commit to a small probability of plot twists on the final
page, even if every novel with such a twist is more exciting. If her pub-
lisher refused to publish those boring books without plot twists, readers
would find her remaining books less surprising. Note that this commit-
ment problem is less of an issue in sports. The players involved want to
win, so a team with a dominating lead will not slack off just to make the
game more exciting. As we shall see, the commitment to allow ex post
boring realizations is necessary for maximizing surprise but not suspense.
Finally, we consider a single principal who provides entertainment. In

many settings, there are multiple entities that vie for the attention of the
audience.13 Full analysis of such settings is beyond the scope of this pa-
per, but we suspect that competition is likely to exacerbate commitment
problems: the pressure to produce works that are more exciting than
those of a competitor might induce the elimination of boring belief
paths, which would in turn reduce the overall entertainment supplied in
equilibrium.

B. Interpretation of Time
In some settings, time is naturally discrete, and a period in our model is
determined by the frequency with which the agent receives new infor-
mation. In tennis, for example, a period may reflect each point that is
played. In other settings, for example, soccer, information is revealed in
continuous time. While our model is specified in discrete time, we also
derive some results on continuous time limits.
Even in settings in which the natural notion of a period is uncoupled

from calendar time, for example, tennis, the very passage of time may be
necessary for the enjoyment of suspense and surprise. Watching a tennis
match in fast-forward without being given the time to relish the drama
would likely decrease the appeal of the game. Our model abstracts from
this issue.

13 Ostrovsky and Schwarz ð2010Þ and Gentzkow and Kamenica ð2011Þ consider ðstaticÞ

environments in which multiple senders independently choose signals in an attempt to
influence a decision maker.
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In situations in which the choice of a period is arbitrary, our model
has an unappealing feature that increasing T generates more utility.

226 journal of political economy
Hence it may be suitable to normalize the payoffs, say by dividing them
by

ffiffiffiffi
T

p
. ðIn the baseline specification, this normalization implies that

feasible payoffs are independent of T.Þ14 Since our focus is not on com-
parative statics with respect to T, we simplify the exposition by not im-
posing such a normalization.
Indeed, in many cases, a longer T is undesirable. A novel or a game

can be too long. We can formalize this by adding an opportunity cost of
time. Specifically, suppose that we modify the payoffs so that the agent’s
utility is reduced by cðT *Þ if it took T * periods to reveal the state. We
analyze this modification in the online appendix. We establish two key
results. First, the principal cannot strictly increase the agent’s suspense
utility by introducing uncertainty over T *. ðThis holds with a caveat that
the optimal T * might not be an integer, in which case randomizing be-
tween two adjacent integers yields a small benefit.Þ Second, a suspense-
optimalmartingale is no longer unique, even in the case of binary states.15

We provide a characterization of alternative optimal martingales with an
uncertain T *.
In bringing our model to the data, the choice of the period will also be

determined by data availability. For example, a tennis audience may
experience shifts in their beliefs with each and every stroke, but data may
be available only at a point-by-point resolution. Similarly, even if infor-
mation is revealed continuously during a soccer match, the events may
be recorded only on a minute-by-minute basis.

C. Interpretation of the Preferences
Under our definition, a moment is laden with suspense if some crucial
uncertainty is about to be resolved. Suppose that a college applicant is
about to open an envelope that informs her whether she was accepted to
her top-choice school, a soccer player steps up to take a free kick, or a
pitcher faces a full count with bases loaded. These situations seem sus-
penseful, and the key feature is that the belief about the state of the
world ðdid she get in, which team will winÞ is about to change.16

For the purpose of aggregating suspense over multiple periods, it
seems most plausible to assume that uð�Þ is strictly concave. Consider two
mystery novels, both of which open with the same prior m0 and reveal the

14 In the case of surprise, this holds exactly only in the limit as T → `.
15
 In Sec. IV, we show that with binary states the optimal martingale for a given T * is

unique.
16 Neurobiological evidence suggests that, in monkeys, suspense about whether a reward

will be delivered induces sustained activation of dopamine neurons ðFiorillo, Tobler, and
Schultz 2003Þ.
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murderer by period T. Novel A slowly reveals clues over time, generat-
ing a suspense of, say, x in each period. The total suspense payoff from

suspense and surprise 227
novel A is TuðxÞ. In novel B ðfor boringÞ, nothing happens at all in
the first third of the book; then the murderer is announced in a single
chapter, and after that, nothing at all happens again until the end of
the book. This generates a suspense payoff of uðTxÞ. Assuming that uð�Þ
is strictly concave thus ensures that a reader seeking suspense prefers
novel A to novel B.
We say that a moment generated a lot of surprise if the agent’s belief

just moved by a large amount.17 Suppose that our college applicant un-
expectedly receives a letter rescinding the previous acceptance letter,
which had been mailed by mistake, or a soccer player scores a winning
goal from 60 yards away in the final moments of the game. These events
seem to generate surprise, and the key feature is that the belief about
the state of the world changed dramatically.
Note that suspense is experienced ex ante whereas surprise is expe-

rienced ex post. There is another crucial distinction between the two
concepts. The overall surprise depends solely on the belief path realized.
In contrast, suspense depends on the belief martingale as well as on the
belief path. Recall figure 1. The realized belief paths fully determine the
surprise, but not the suspense, generated by each match. Suspense at a
given point depends on the entire distribution of next period’s beliefs.
In figure 2, we illustrate this distribution by adding thin tendrils that
indicate what the belief would have been had the point turned out dif-
ferently. Figure 2 makes it apparent that Djoković-Federer was a more
suspenseful match than Murray-Nadal.
As we mentioned in the introduction, we believe that suspense and

surprise are important in many contexts. Sports fans enjoy the drama of
the shifting fortunes between players. Playing blackjack at the casino, a
gambler knows the odds are against her but derives pleasure from the
ups and downs of the game itself. Politicos and potential voters enjoy
following the news when there is an exciting race for political office such
as the 2008 Clinton-Obama primary. Figure 3 presents data on the belief
movements in each of these settings.
For tennis, we collected point-level data for every match played in

grand-slam tournaments in 2011. We focus exclusively on women’s ten-
nis in order to have a fixed best out of three sets structure. Each belief
path is associated with a particularmatch.We estimate the likelihood that
a given player will win the match by assuming that the serving player wins
any given point with a fixed tournament-specific probability. This gives
us, at each point, the likelihood of a win ðthick lineÞ and what this like-

17 Kahneman and Miller ð1986Þ offer a different conceptualization of surprise based on

the notion of endogenously generated counterfactual alternatives.
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lihood would have been had the point played out differently ðthin ten
drilsÞ. Hence, we can compute the suspense and surprise realized in each

FIG. 2.—2011 US Open Semifinals, suspense and surprise. The thin tendrils indicate
what the belief would have been if the point had gone the other way.

228 journal of political economy
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match.
For soccer, we collected data on over 24,000 matches played between

August 2011 and July 2012 across 67 professional leagues. We exclude
knockout competitions in which matches can end in overtime or penalty
shootouts, so each match lasts approximately 94 minutes ðinclusive of
stoppage timeÞ. To parallel the binary state space in the rest of figure 3,
we focus on the likelihood that the home team will win ðvs. tie/loseÞ.
We estimate this likelihood minute by minute, on the basis of a league-
specific hazard rate of goal scoring, computed separately for the home
and away teams. For each minute we also estimate the beliefs that would
have realized if the home team, away team, or neither team had scored.
Thus, as for tennis, we can compute the suspense and surprise generated
by each soccer match.
For blackjack, we simulate 20,000 visits to Las Vegas. On every visit,

our artificial gambler begins with a budget of $100 and plays $10 hands
of blackjack until he either increases his stack to $200 or loses all his
money. Each belief path is associated with a particular visit. The dealer’s
behavior in blackjack is regulated, and our gambler strictly follows op-
timal ðnon-card-countingÞ play. Hence, following each individual card
that is dealt, we can explicitly compute the updated probability that the
gambler will walk away with the winnings rather than empty-handed.
Also, we can determine what this probability would have been for every
other card that could have been dealt. This allows us to determine the
suspense and surprise realized in each visit. Moreover, we can use these
simulations to examine how a given change in casino rules would influ-
ence the distribution of suspense and surprise. For example, we confirm
that allowing doubling down and splitting, as all Vegas casinos do, in-
deed increases expected suspense and surprise.18

18 Doubling down means that the gambler is allowed to increase the initial bet by $10
after his first two cards in exchange for committing to receiving exactly one more card.
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For the Clinton-Obama primary, we depict the daily average price of a
security that pays out if Obama wins the 2008 Democratic National

FIG. 3.—Suspense and surprise from a variety of processes

suspense and surprise 229
Convention. There is a single belief path for this particular primary. In
contrast to tennis and blackjack, these data do not provide a way to
estimate the distribution of the next day’s beliefs. Hence, we are able to
compute realized surprise but not suspense.

Splitting means that if the first two cards have the same value, the player can split them into
two hands and wager an additional $10 for the new hand.
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For comparison we also draw 1,000 belief paths from the suspense-
and surprise-optimal martingales. In the right panel of figure 3, we dis-

230 journal of political economy
play the scatter plot of realized suspense and surprise for each setting.19

We identify the observation that is closest to the median level of suspense
and median level of surprise. We mark this observation with a black cir-
cle in the right panel and depict its belief path in the left panel. Addi-
tional details about the construction of figure 3 are in the online ap-
pendix.
These examples illustrate some of the ways in which belief martingales

can be estimated. For blackjack, it is possible to simulate the distribution
of belief paths on the basis of solely the structure of the rules; the data-
generating process is known. For the primary, we use data from a pre-
diction market. For tennis and soccer, we estimate the likelihood of the
relevant events ðthe server will win the point, the home team will score,
etc.Þ in each period and derive the belief path implied.20 Additionally,
belief martingales might be elicited through laboratory experiments.
For instance, a researcher could pay subjects to read a mystery novel and
offer them incentives to guess who the murderer is after each chapter.
We hope that in future research this range of methods will allow for
construction of data sets on suspense and surprise in a number of other
contexts.

D. Illustrative Examples
To develop basic intuition about the model, we consider a few examples
in which the principal’s problem can be analyzed without any mathe-
matics. Suppose that a principal wishes to auction a single object to bid-
ders who have independent private values but also enjoy suspense or
surprise about whether they will win the auction. The principal must
choose between the English auction and the second-price sealed-bid auc-
tion. Conditional on standard bidding behavior, the English auction is
preferable; it reveals information about the winner slowly rather than all
at once, so it gives bidders a higher entertainment payoff.
Or, consider elimination announcements on a reality TV show. In

each episode, one of two contestants, say Scottie or Haley, gets elimi-
nated. The host of the show calls out one of the names, for example,

19 We utilize the baseline specification for uð� Þ and normalize realized suspense and
surprise across settings by dividing by the square root of the number of periods. ðAs we

show later, maximal suspense and surprise are proportional to

ffiffiffiffi
T

p
.Þ

20 Our estimation procedure for both tennis and soccer is admittedly crude, but it serves
to illustrate a method for deriving belief paths. For tennis, if we had more data, we could
estimate the likelihood a given player wins a given point conditional on the surface, the
current score, the recent change in score, the players’ rankings, etc. Or one could directly
estimate the likelihood a given player wins the entire match given these factors. Similar
considerations apply to soccer.
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“Scottie, please step forward.” Then, she says either “You are eliminated”
or “You go through” to the person who was called. If the host always

suspense and surprise 231
called the person who was to be eliminated or the person who would go
through, then the outcome would be revealed immediately when she
asked Scottie to step forward. If the host chose participants without re-
gard to elimination, then calling Scottie to step forward would convey
no information at all. The second comment would reveal everything. To
increase suspense or surprise, the host should make the initial call par-
tially informative. After the host has called Scottie forward, the audience
should believe that Scottie is now either more likely to go through or
more likely to be eliminated. Either policy works, as long as the audience
understands how to interpret the signal. Anecdotally, many reality TV
shows seem to follow this formula.
Economists and psychologists have extensively studied why people

gamble—why they spend money in casinos. Our model gives a rationale
for why people spend time in casinos. The weekend’s monetary bets ða
compound lotteryÞ could be reduced to a single bet ða simple lotteryÞ.
But this would deprive the gambler of an important element of the ca-
sino experience. Part of the fun of gambling is the suspense and surprise
as the gambler anticipates and then observes each flip of a card, spin of
the wheel, or roll of the dice.21

These three examples are specific instances of a more general feature
of suspense and surprise: spoilers are bad. In other words, revealing all
the information at once ðas a spoiler doesÞ yields the absolute minimum
suspense and surprise ðgiven that all information is revealed by the endÞ.
This feature of the preferences seems in accordance with real-world
intuitions about suspense and surprise.22

Finally, when watching a sports match between two unfamiliar teams,
spectators commonly root for the underdog or the trailing team. Our
model gives an explanation for this kind of behavior. There is more sur-
prise when the underdog wins. And when the trailing team scores, we
have a closer match that generates more continuation suspense and
surprise.

IV. Suspense-Optimal Information Policies
In this section, we take the prior and the number of periods as given and
derive the information policy that maximizes expected suspense.

21 Barberis ð2012Þ considers a model in which gamblers behave according to prospect

theory. Casinos then offer dynamic gambles so as to exploit the time inconsistency induced
by nonlinear probability weighting.

22 Christenfeld and Leavitt ð2011Þ claim that readers in fact prefer spoilers. However,
they obtain this result only when spoilers are announced rather than embedded within the
text, which raises concerns about experimenter demand effects.
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A. Solving the Principal’s Problem

232 journal of political economy
Recall that given any belief martingale, there exists an information pol-
icy that induces it ðlemma 1Þ. So we can think of the principal’s choice
of an information policy as equivalent to the choice of a martingale. To
simplify notation, let the aggregated variance of period t 1 1 beliefs,
given information at time t, be denoted by

j2
t ; Eo

q

ð~mq

t11 2 mq

t Þ2:

We can then write the principal’s problem as maximizing E~moT21

t50 uðj2
t Þ.

We begin by making two observations. First, any suspense-optimal
martingale will be fully revealing by the end; that is, the final belief mT is
degenerate. To see this, take some policy that does not always fully reveal
and modify the last signal to be fully informative. This increases j2

T21 and
leaves j2

t unchanged at t < T 2 1, raising suspense.
Second, all martingales that are fully revealing by the end yield the

same expected sum of variances, Eh~pjm0io
T21

t50 j
2
t . This follows from the fact

that martingale differences are uncorrelated. For any collection of un-
correlated random variables, the sum of variances is equal to the vari-
ance of the sum. Hence, any fully revealing policy ~p yields the same
Eh~pjm0io

T21

t50 j
2
t .

23

The same logic holds, going forward, from any current belief m at any
period. We denote this residual variance from full revelation by WðmÞ;
oqm

qð12 mqÞ.24
We summarize these two points in the following lemma.
Lemma 2. Any suspense-maximizing information policy is fully re-

vealing by the end. Under any information policy ~p that is fully revealing
by the end, Eh~pjm0io

T21

t50 j
2
t 5Wðm0Þ.

Starting from the prior, the principal can thus be thought of as hav-
ing a “budget of variance” equal to Wðm0Þ. The principal then decides
how to allocate this variance across periods so as to maximize E~motuðj2

t Þ
subject to E~motj

2
t 5Wðm0Þ. By concavity of uð�Þ, it would be ideal to dole

out variance evenly over time. Is it possible to construct an information
policy so that j2

t is equal to Wðm0Þ=T in each period t, on every path? If

23 Augenblick and Rabin ð2012Þ also point out this feature of belief martingales; they use

it to construct a test of Bayesian rationality.

24 Residual variance also plays a role in insider trading models ðKyle 1985; Ostrovsky
2012Þ, where it captures how much of the insider’s private information has not yet been
revealed to the market. This bounds the total variation in future prices, which in turn
places an upper bound on the insider’s profits.

This content downloaded from 128.192.114.19 on Sun, 7 Jun 2015 15:04:34 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


so, such a policy would be optimal. In fact, we can construct such a
policy. Let

suspense and surprise 233
Mt ;
�
mjWðmÞ5 T 2 t

T
Wðm0Þ

�
:

Proposition 1. A belief martingale maximizes expected suspense if
and only if mt ∈Mt for all t. The agent’s expected suspense from such a
policy is TuðWðm0Þ=T Þ.
Proof. A martingale ~m that is fully revealing by the end has j2

t con-
stant across t if and only if WðmtÞ5 ½ðT 2 tÞ=T �Wðm0Þ, or in other words,
mt ∈Mt for all t. We are going to show that in fact there exists a martin-
gale ~m with mt ∈Mt for all t ðwhich therefore has constant j2

t Þ. Then by
lemma 1, we know that there exists a policy ~p such that h~pjm0i5 ~m. It
follows that ~m is optimal, proving the sufficiency part of the proposition.
Any martingale with nonconstant j2

t gives a lower payoff, establishing
necessity.
In general, given any sequence of sets ðXtÞ, there exists a martingale ~m

such that Supp ~mtð Þ ⊂ Xt for all t if Xt ⊂ conv Xt11ð Þ for all t. Therefore, it
remains to show that Mt ⊂ conv Mt11ð Þ for all t. By definition of Wð�Þ, for
any k ≥ 0 we have convðfmjWðmÞ5 kgÞ5 fmjWðmÞ ≥ kg. Hence,

Mt 5

�
mjWðmÞ5 T 2 t

T
Wðm0Þ

�
⊂
�
mjWðmÞ ≥ T 2 ðt 1 1Þ

T
Wðm0Þ

�
5 convðMt11Þ:

QED
This proposition provides a recipe for constructing a suspense-

optimal information policy. At the outset, the belief m0 is contained in
M0. In each period t, given mt ∈Mt , the principal chooses a signal that
induces a distribution of beliefs whose support is contained in the set
Mt11. Any distribution of beliefs ~mt11 can be induced by some signal as
long as Et ½~mt11�5 mt ; this includes distributions with support in Mt11, as
shown in the proof of proposition 1. In particular, given ~mt11, let pðsjqÞ
5 mq

s ~mt11ðmsÞ=mq
t . By Bayes’s rule, this signal induces ~mt11.

There is a natural geometric interpretation of the setMt that sheds fur-
ther light on the structure of suspense-optimal information policies. The
setMt is defined as those beliefs with residual variance ½ðT 2 tÞ=T �Wðm0Þ.
Following some simple algebra, we can equivalently characterize each
Mt as a “circle” ða hypersphereÞ centered at the uniform belief. Denoting
the uniform belief by m

*
; ð1=jQj; : : : ; 1=jQjÞ, we can write Mt as
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�
2 2 t

�
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Mt 5 mjjm2 m
*
j 5 jm0 2 m

*
j 1

T
Wðm0Þ ;

where jm2 m
*
j2 5oqðmq 2 mq

*
Þ2 denotes the square of the Euclidean dis-

tance between m and m
*
. The uniform belief m

*
has the highest residual

variance of all beliefs, and residual variance falls off with the square of the
distance from m

*
. The residual variance of beliefs in Mt falls linearly in t,

and hence beliefs lie on circles whose radius squared increases linearly
over time. At time T, the circle has the maximum radius and intersects
DðQÞ only at degenerate beliefs. Figure 4 illustrates this geometric char-
acterization of suspense-optimal information policies.
Below we summarize some of the key qualitative features of suspense-

optimal information revelation.
The state is revealed in the last period, and not before : As long as the prior is

not degenerate, the residual variance is positive at any time t < T. In
particular, the residual variance at time t is ½ðT 2 tÞ=T �Wðm0Þ.
Uncertainty declines over time : Uncertainty, as measured by the residual

variance, declines linearly over time from Wðm0Þ to zero.
FIG. 4.—The path of beliefs with Q5 f0; 1; 2g. The triangle represents DðQÞ, the two-
dimensional space of possible beliefs. TheMt sets are circles centered on the uniform belief
m
*
, intersected with the triangle DðQÞ. The belief begins at m0; in this picture m0 is at m*

. The
belief mt at time t will be inMt. Given current belief mt ∈Mt , any distribution ~mt11 over next-
period beliefs with mean mt and support contained in Mt11 is consistent with a suspense-
maximizing policy. At time T the uncertainty is resolved, so mT will be on a corner of the
triangle.
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Realized suspense is deterministic : There is no ex post variation in sus-
pense. Although the path of beliefs is random, the agent’s suspense is

suspense and surprise 235
the same across every realization. It is always exactly TuðWðm0Þ=T Þ.
Suspense is constant over time: The variance j2

t in each period t isWðm0Þ=T .
So the agent’s experienced suspense is uðWðm0Þ=T Þ in each period.
The prior that maximizes suspense is the uniform belief : Total suspense is

TuðWðm0Þ=T Þ. The budget of variance Wðm0Þ is increasing in the proxim-
ity of m0 to m

*
; Wðm0Þ is maximized at m0 5 m

*
.

The level of suspense increases in the number of periods: It is immediate from
the outset that total suspense must be weakly increasing in T: any signals
that can be sent over the course of T periods can also be sent in the first
T periods of a longer game. In fact, the suspense TuðWðm0Þ=T Þ is strictly
increasing in T. For uðxÞ5 xg with 0 < g < 1, for instance, total suspense
is proportional to T 12g.
Suspense-optimal information policies are independent of the stage utility func-

tion: Under any concave uð�Þ, any optimal policy induces beliefs in Mt.
The expression for Mt is independent of uð�Þ.

B. Illustration of Suspense-Optimal Policies
1. Two States

We first illustrate these policies in the case of a binary state space Q5
fA; Bg. In a sporting event, will team A or team B win? In a mystery
novel, is the main character guilty or not? In this case, each set Mt con-
sists of just two points. This leads to a unique suspense-maximizing be-
lief martingale, depicted in figure 5.
The suspense-optimal policy gives rise to the following dynamics. At

period t the belief mt ; PrðAÞ is either a high value Ht > 1=2 or a low
value Lt5 12Ht.

25 In each period, one of two things happens. With high
probability the agent observes additional confirmation: the high belief Ht

moves to a slightly higher belief Ht11, or the low belief Lt moves to Lt11.
With a smaller probability, there is a plot twist. In the event of a plot twist,
beliefs jump from the high path to the low one, or vice versa. As time
passes, plot twists become larger but less likely.26 If we consider a limit as

25 In this binary case, we abuse notation by associating the belief with the probability of

one of the states.

26 We can solve for Ht and Lt explicitly as

Ht 5
1
2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m0 2

1
2

�2

1
t
T
m0ð12 m0Þ

r
;

Lt 5
1
2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m0 2

1
2

�2

1
t
T
m0ð12 m0Þ

r
:
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T goes to infinity, the arrival of plot twists approaches a Poisson pro-
cess with an arrival rate that decreases over time.27

FIG. 5.—The suspense-optimal belief martingale with two states. This picture depicts the
case in which m0 5 1=2. The belief at time t will be either Ht > 1=2 or Lt < 1=2. The prob-
ability of a plot twist ðwhich takes beliefs from Ht to Lt11 or from Lt to Ht11Þ declines over
time.

236 journal of political economy
In the context of a mystery novel, these dynamics imply the following
familiar plot structure. At each point in the book, the reader thinks that
the weight of evidence suggests that the protagonist accused of murder
is either guilty or innocent. But in any given chapter, there is a chance
of a plot twist that reverses the reader’s beliefs. As the book continues
along, plot twists become less likely but more dramatic.
In the context of sports, our results imply that most existing rules

cannot be suspense-optimal. In soccer, for example, the probability that
the leading team will win depends not only on the period of the game
but also on whether it is a tight game or a blowout. Moreover, the team

The probability of a plot twist is
27 To derive the limit, take T to infinity and rescale time to s 5 t=T . This yields a Pois-
son process with plot twist arrival intensity of

m0ð12 m0Þ
12 4ð12 sÞm0ð12 m0Þ

:

1
2
2

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m0 2

1
2

�2

1
t 2 1
T

m0ð12 m0Þ
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m0 2

1
2

�2

1
t
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that is behind can come back to tie up the game, in which case uncer-
tainty will have increased rather than decreased over time.

suspense and surprise 237
Optimal dynamics could be induced by the following set of rules. We
declare the winner to be the last team to score. Moreover, scoring be-
comes more difficult as the game progresses ðe.g., the goal shrinks over
timeÞ. The former ensures that uncertainty declines over time while the
latter generates a decreasing arrival rate of plot twists. ðIn this context,
plot twists are lead changes.Þ
To conclude the discussion of binary states, we note the following qual-

itative points that apply in this case.
Beliefs can jump by a large amount in a single period: In each period, either

beliefs are confirmed or there is a plot twist. A plot twist takes beliefs
from mt to something further away than 12 mt .
Belief paths are smooth with rare discrete jumps when there are many periods:

Beliefs move along the increasing Ht or decreasing Lt curves with occa-
sional plot twists when beliefs jump from one curve to the other. In the
limit as T gets large, the expected number of total plot twists stays small.
Expected absolute variation oT21

t50 jmt11 2 mt j converges to a finite value as
T goes to infinity.28

2. Three or More States

With more than two possible outcomes, there is additional flexibility in
the design of a suspense-maximizing martingale. Say that there is a mys-
tery novel with three suspects, and we currently believe A to be the most
likely murderer. In the next chapter we will see a clue ða signalÞ that alters
our beliefs, either providing further evidence of A’s guilt or pointing to
B or C as a suspect. It may be the case that there are three possible clues
we can see, or five, or 50. The only restriction is that after we observe the
clue, our belief has the right amount of uncertainty as measured by re-
sidual variance.
We highlight two classes of optimal policies with natural interpreta-

tions. Figure 6a illustrates what we call an alive till the end policy. In each
period there is news favoring one of the states. No piece of news ever
eliminates any state entirely until the last period. This corresponds to
a mystery novel for which the reader becomes more confident of the
murderer over time but always anticipates the possibility of a plot twist
pointing toward any other suspect or to a race in which no participant is
entirely ruled out until the very end. Figure 6b shows a different kind
of policy, sequential elimination. Here, one of the probabilities is quickly
taken to zero. At that point the policy maximizes suspense over the re-
maining states. In amystery novel, suspects are eliminated by being killed

28 In the limit as T → `, the expected absolute variation converges to 2minfm0; 12 m0g.
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off one by one. Or in a sports tournament, each game eliminates one of
the players.

principal is constrained by a fixed sum of significances oqa
q.

30 Proofs of this and other claims from this subsection are in the online appendix.

FIG. 6.—Two optimal policies. Beliefs travel outward over the Mt circles, with possible
belief paths indicated by the arrows.
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C. Extensions
When we introduced the model we discussed potential extensions to
state-dependent or time-dependent significances. In the case of state-
dependent significance ðwith weights aqÞ, all the results apply when we
redefine WðmÞ as oqa

qmqð12 mqÞ. Geometrically, the Mt sets are ellipses
rather than circles ðellipsoids rather than hyperspheresÞ. Also, the op-
timal prior is no longer necessarily uniform when there are more than
two states: more significant states are given priors closer to one-half.
Sufficiently insignificant states may be given a prior of zero, and as the
significance of one state begins to dominate all others, the prior on that
state goes to one-half.
An alternative extension is a setting in which the principal chooses

aq’s and m0.
29 ðFor example, a sports league may be able to influence the

market share across teams, or the novelist chooses how much reader
empathy to generate for each character.Þ In this case, the principal’s
choice is optimal if and only if mq

0 5 1=2 for each state with aq > 0.30 This
means that there are two basic ways to maximize suspense. One way is to
have only two states of interest, with 50/50 odds between those two: good
versus evil, Democrat versus Republican, Barcelona versus Real Madrid.
Alternatively, there may be a single state of interest, realized with prob-

29 Utility increases in each aq, so to make this problem well posed, we assume that the
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ability 50 percent. The reader cares only about whether the protagonist
is found innocent or guilty. Conditional on the protagonist’s innocence,
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any of the irrelevant characters may be the murderer with any proba-
bilities.
In the case of time-dependent significances ðwith weights btÞ, it is no

longer optimal to divide suspense evenly over time. Instead, more im-
portant periods are made to be more suspenseful. For example, in the
baseline specification for uð�Þ, we would set jt proportional to bt .

V. Surprise-Optimal Information Policies
Solving for the surprise-optimal martingale is difficult in general and, in
contrast to the case of suspense, sensitive to the choice of uð�Þ. So in this
section we restrict attention to binary states Q5 fA; Bg and the base-
line specification, where surprise in period t equals jmt 2 mt21j with mt ;
PrðAÞ.31 We derive an exact characterization of optimal belief martin-
gales for very small T and discuss properties of the solution for large T.32

Let WT ðmÞ be the value function of the surprise maximization prob-
lem, where T is the number of periods remaining and m is the current
belief. We can express the value function recursively by settingW0ðmÞ; 0
and

WT ðmÞ5 max
~m0∈DðDðQÞÞ

E~m0 ½jm0 2 mj1WT21ðm0Þ�
subject to E~m0 ½m0�5 m:

The single-period problem above can always be solved by some ~m0 with
binary support.33 That is, for any current belief, there is a surprise-
maximizing martingale such that next period’s belief is either some ml or
mh ≥ ml .
The solution can be derived by working backward from the last period.

In the final period, it is optimal to fully reveal from any prior: ml 5 0 and
mh 5 1. This yields a value function of W1ðmÞ5 2mð12 mÞ.
With two periods remaining, it is optimal to set ml 5 m2 1=4 and mh

5 m1 1=4 as long as m ∈ ½1=4; 3=4�. Therefore, if m0 5 1=2 and T5 2, the
surprise-optimal martingale induces beliefs ml 5 1=4 or mh 5 3=4 in pe-
31 Recall that under the baseline specification, surprise in period t is the Euclidean dis-
tance between the belief vectors in periods t and t 2 1. To avoid introducing a nuisance
term, however, in this section we set surprise in period t to be the Euclidean distance be-
tween the scalars mt and mt21. This amounts to scaling all surprise payoffs by 1=

ffiffiffi
2

p
.

32 In the online appendix, we discuss how some features of the surprise optimum change
if we depart from the baseline specification.

33 With m andWT21 fixed, this single-period problem of choosing ~m0 is a special case of the
problem considered by Kamenica and Gentzkow ð2011Þ.
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riod 1 and then fully reveals the state in the second period. The details
of this and the next derivation are in Appendix A.
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The solution for T 5 3 with the prior of m0 5 1=2 is displayed in
figure 7. In the first period the belief moves to either one-fourth or
three-fourths with equal probability. Then, the belief either moves to the
boundary or returns to one-half. Any remaining uncertainty is resolved
in the final period.
We see that, in contrast to the solution for optimal suspense, there

are paths in which all uncertainty is resolved before the final period T.
These paths have lower overall surprise than the paths that resolve only
at the end. But the optimal information policy accepts a positive probabil-
ity of early resolution in return for a chance to move beliefs back to the
interior and set the stage for later surprises. Also in contrast to the sus-
pense solution, uncertainty can either increase or decrease over time. Be-
liefs may move toward an edge or back toward one-half. In the suspense-
optimal martingale, uncertainty only increases.
These features underscore the commitment problem facing a surprise-

maximizing principal. The surprise-optimal martingale has paths that
generate very little surprise. In order to implement the optimal policy, the
principal requires the commitment power to follow such paths. Other-
wise, he is tempted to prune such paths and choose a path with maxi-
mal surprise. The agent would expect this deviation, and the chosen path
would no longer be surprising.34 In contrast, maximizing suspense does
not involve this form of commitment because the suspense-optimal in-
formation policy yields equal suspense across all realized paths.
This importance of commitment sheds some light on the phenome-

non of dedicated sports fans. It may seem tempting to record a game
and let others tell you whether it was exciting before you decide whether
to watch it.35 However, such a strategy is self-defeating: the very knowl-
edge that the game was exciting reduces its excitement. Similarly, if
ESPN Classic shows only those games with comeback victories, the audi-
ence would never be surprised at the comeback. To make the comebacks
surprising, ESPN Classic would have to show some games in which one
team took a commanding early lead and never looked back.
For arbitrary T, it is difficult to analytically solve for surprise-optimal

belief martingales. The properties of the value function WT ðmÞ in the
limit as T goes to infinity, however, have previously been studied by
Mertens and Zamir ð1977Þ. Their interest in this limiting variation of

34
 Without commitment, all paths ðincluding ones in which the belief moves mono-
tonically to a boundaryÞ must generate the same surprise in equilibrium. Hence the
principal’s payoff cannot be greater than if all information is revealed at once. This echoes
Geanakoplos’s ð1996Þ result about the hangman’s paradox.

35 The website http://ShouldIWatch.com, e.g., provides this information.
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a bounded martingale arose in the study of repeated games with asym-
metric information.36

FIG. 7.—The surprise-optimal policy when T 5 3
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Proposition 2 ðMertens and Zamir 1977, eq. 4.22Þ. For any m,

lim
T→`

WT ðmÞffiffiffiffi
T

p 5 fðmÞ;

where fðmÞ is the probability density function ðpdfÞ of the standard nor-
mal distribution evaluated at its mth quantile:

fðmÞ5 1ffiffiffiffiffiffi
2p

p e2ð1=2Þx2
m ;

36 De Meyer ð1998Þ extends their results to the more general Lq variation; i.e., he con-

siders the problem of maximizing

E

	
o
T21

t50

ðEjmk11 2 mk jqÞ1=q


:

Under binary states and the baseline specification, this is our surprise problem if q5 1 and
our suspense problem if q 5 2. De Meyer searches for the limit of the Lq value function di-
vided by

ffiffiffiffi
T

p
as T goes to infinity. He finds that for q ∈ ½1, 2Þ, this limit is constant in q and

is equal to fðmÞ, as given in proposition 2 for q 5 1. For q > 2, de Meyer finds that the limit
approaches infinity for any m ∈ ð0; 1Þ. However, de Meyer incorrectly suggests that the
methods of Mertens and Zamir can be used to show that the value function for q 5 2 will
be identical to that for q < 2. In fact, our solution to the suspense problem with binary
states and the baseline specification shows this to be false. The limiting value function isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð12 mÞp

rather than fðmÞ.
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with xm defined by
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Exm

2`

1ffiffiffiffiffiffi
2p

p e2ð1=2Þx2

dx 5 m:

In particular,

ffiffiffiffi
T

p
fðmÞ2 a ≤WT ðmÞ ≤

ffiffiffiffi
T

p
fðmÞ1 a

for some constant a > 0 independent of m and T.
This characterization implies that the surprise payoff—that is, the

expected absolute variation—is unbounded as T goes to infinity. This
means that belief paths are “spiky” rather than smooth as T gets large.
Recall that in the suspense-optimal martingale, expected absolute vari-
ation was bounded in T.
Another difference between optimal surprise and suspense is the

range of possible belief changes in a given period. In each period of the
suspense problem, there is a chance of a twist that leads to a large shift
in beliefs. In the surprise problem, however, beliefs move up or down
only a small amount in periods when there is a lot of time remaining.
Proposition 3. For all e > 0, if T 2 t is sufficiently large, then

for any belief path in the support of any surprise-optimal martingale,
jmt11 2 mt j < e.
The proof, in Appendix A, builds on proposition 2. We can now sum-

marize some qualitative features of surprise-optimal information revela-
tion.
The state is fully revealed, possibly before the final period: Any time the belief

at T 2 2 is below one-fourth or above three-fourths, for instance, there
is a chance of full revelation at period T 2 1.
Uncertainty may increase or decrease over time : Uncertainty, as measured

by residual variance, sometimes increases. In other words, beliefs some-
times move toward m5 1=2. With sufficiently many periods remaining,
residual variance in the next period can always either increase or de-
crease ðexcept in the special case of mt 5 1=2Þ.
Realized surprise is stochastic : In an optimal martingale there are low

surprise paths ðe.g., ones in which beliefs move monotonically to an
edgeÞ or high surprise paths ðwith a lot of movement up and downÞ.
Surprise varies over time: Both realized and expected surprise can vary

over time. Consider T5 2 under the optimal martingale, where m0 5 1=2,
m1 ∈ f1=4; 3=4g, and m2 ∈ f0; 1g. On a particular belief path, say ð1=2;
1=4; 1Þ, realized surprise in period 1 is different from realized surprise
in period 2. Moreover, from the ex ante perspective, the expected sur-
prise in period 1 is one-fourth while the expected surprise in period 2
is three-eighths.
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The prior that maximizes surprise is the uniform belief : We show that for T ≤
3, surprise is maximized at the uniform prior. We conjecture that this

suspense and surprise 243
holds for all T. Proposition 2 shows that surprise is maximized at the
uniform prior in the limit as T → `.
The level of surprise increases in the number of periods T: While we do not

have a general expression for total surprise as a function of T, proposi-
tion 2 implies that, in the limit, total surprise increases proportionally
with

ffiffiffiffi
T

p
. It is obvious that surprise is weakly increasing in T.

Beliefs change little when there are many periods remaining : By proposi-
tion 3, jmt11 2 mt j is small when T 2 t is large.
Belief paths are spiky when there are many periods : Expected absolute var-

iation, which is equal to the surprise value function, goes to infinity as T
gets large.
Surprise-optimal information policies depend on the stage utility function: In

the online appendix, we consider alternative uð�Þ functions. For very
concave uð�Þ, the surprise-optimal policy can be non–fully revealing by
the end. For convex uð�Þ, the surprise-optimal prior can be nonuniform.

VI. Comparing Suspense and Surprise
As the two preceding sections reveal, suspense-optimal and surprise-
optimal belief martingales are qualitatively different. Another way to
appreciate these differences is to consider sample belief paths drawn
from a suspense-optimal and a surprise-optimal martingale, as shown
in figure 8. Here we show three representative belief paths for each of
the two processes: a path at the 25th percentile of suspense and surprise
from the simulations of figure 3, at the median, and at the 75th per-
centile. The suspense paths reveal the distinctive plot twist structure
whereas the surprise paths show the spiky nature of surprise-optimal
martingales.
While no existing sport would induce the exact distributions of belief

paths we derive, we can think of soccer and basketball as representing
extreme examples of sports with the qualitative features of optimum sus-
pense and surprise. In any given minute of a soccer game, it is very likely
that nothing consequential happens. Whichever team is currently ahead
becomes slightly more likely to win ðsince less time remainsÞ. There is a
small chance that a team scores a goal, however, which would have a
huge impact on beliefs. So ðas fig. 3 illustratesÞ, belief paths in soccer are
smooth, with few rare jumps. This sustained small probability of large
belief shifts makes soccer a very suspenseful game. In basketball, points
are scored every minute. With every possession, a team becomes slightly
more likely to win if it scores and slightly less likely to win if it does not.
But no single possession can have a very large impact on beliefs, at least
not until the final minutes of the game. Belief paths are spiky, with a high
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frequency of small jumps up and down; basketball is a game with lots of
surprise.

suspense and surprise 245
The distinction between suspense-optimal and surprise-optimal mar-
tingales somewhat clashes with an intuition that more suspenseful events
also generate more surprise. This intuition is indeed valid in the fol-
lowing two senses. First, given a martingale, belief paths with high re-
alized suspense tend to have high realized surprise; this can be seen in
the right column of figure 3. Moreover, the expected suspense and sur-
prise are highly correlated across martingales generated by “random”
information policies. Specifically, suppose T 5 10, Q5 fL; Rg, and
m0 5 1=2. In periods 1–9, a signal realization l or r is observed. When the
true state is q, the signal pq;t at period t is l with probability rq;t and r
with probability 12 rq;t. The values of rq;t are drawn independently and
identically distributed uniformly from ½0, 1� for each q and t. The state is
revealed in period 10. Figure 9 depicts a scatter plot of expected sus-
pense and surprise of 250 such random policies; it is clear that policies
that generate more suspense also tend to generate more surprise. Note
that these policies are history independent in the sense that the signal
sent at period t depends only on t and not on mt . The figure also shows
the numerically derived production possibilities set for suspense and sur-
prise over all fully revealing policies. As this set reveals, the suspense-
optimal martingale does not generate much surprise while the surprise-
optimalmartingale reduces suspense only a little below itsmaximum.This
suggests that maximizing a convex combination of suspense and surprise
is likely to lead to belief paths that resemble the surprise optimum.

VII. Constrained Information Policies
In practice, there are often institutional restrictions that impose con-
straints on the information the principal can release over time. Recall
that we formalize these situations as the principal’s choosing ð~p; m0;T Þ
∈ P so as to maximize expected suspense or surprise. In this section we
will study the nature of the constraint set and the constrained-optimal
policies in some specific examples. Throughout this section, we impose
the baseline specification for uð�Þ.

A. Tournament Seeding
Consider the problem of designing an elimination tournament to maxi-
mize spectator interest. Elimination tournaments begin by “seeding”
teams into a bracket. The traditional seeding pits stronger teams against
weaker teams in early rounds, thereby amplifying their relative advan-
tage. We analyze the effect of this choice on the suspense and surprise
generated by the tournament. The trade-off is clear: by further disad-
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vantaging the weaker team, the traditional seeding reduces the chance
of an upset but increases the drama when an upset does occur.

FIG. 9.—The surprise-suspense frontier
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The simplest example of tournament seeding occurs when there are
three teams. Two teams play in a first round and the winner plays the
remaining team in the final. This remaining team is said to have the first-
round “bye.” Which team should have the bye?
Formally, the state of the world q is identified with the team that wins

the overall tournament, so q ∈ f1; 2; 3g. Assume that the probability that
a team wins an individual contest is determined by the difference in the
ranking of the two teams. Let p > 1=2 denote the probability that a team
defeats the team that is just below it in the ranking, and let q > p denote
the probability that team 1 defeats team 3. The principal chooses which
team will be awarded the bye. This determines the prior as well as the
sequence of signals. For example, team 1’s prior probability of winning
the tournament is p2 1 ð1 2 pÞq if team 1 has the bye and pq if team 2
has the bye. This choice of seeding implies that first it will be revealed
whether team 2 or team 3 has lost, and then it will be revealed which of
the remaining teams has won. Figure 10 illustrates the belief paths for
each of the possible tournament structures.
Notice that one of the shortcomings of the traditional seeding in

which the strongest team has the bye is that it has low residual uncer-
tainty. In fact, for any p and q, straightforward algebra shows that this
traditional seeding generates the least surprise; it is optimal to give the
third team the bye. In the case of suspense, the conclusions are less clear-
cut, but for many reasonable parameters, this same ordering holds.
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There are of course many other reasons for the traditional seeding
that favors the stronger teams. Incentives are an important consider-

FIG. 10.—Beliefs paths for alternate seedings

suspense and surprise 247
ation: teams that perform well from tournament to tournament improve
their rankings and are rewarded with better seedings in subsequent
tournaments. Our analysis suggests that optimizing the tournament
seeding for its incentive properties can have a cost in short-run suspense
and surprise.

B. Number of Games in a Playoff Series
Each round of the National Basketball Association playoffs consists of
a best of seven series. Major League Baseball playoffs use best of five
series for early rounds and best of seven for later rounds. In the National
Football League playoffs, each elimination round consists of a single
game. Of course the length of the series is partly determined by logistical
considerations, but it also influences the suspense and surprise. On the
one hand, having more games leads to slower information revelation,
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increasing suspense and surprise. On the other hand, in a long series the
team that is better, on average, is more likely to eventually win, and this

248 journal of political economy
reduces both suspense and surprise. If a team wins 60 percent of the
matches, there is much more uncertainty over the outcome of a single
match than over the outcome of a best of seven series, or a best of 17
one. With less uncertainty, there is less scope for suspense and surprise.
Formally, consider two teams playing a sequence of games against

each other. The favored team has an independent probability p > .5 of
winning any given game. The organizer chooses some odd number T
anddeclares that the winner of the series is the first team towin ðT 1 1Þ=2
out of T total games. The organizer chooses T to maximize suspense
or surprise.
As we show in Appendix B, suspense and surprise are proportional to

one another for any choice of T. Therefore, for this class of constrained
problems, maximizing suspense is equivalent to maximizing surprise.
In table 1 we display the suspense- and surprise-maximizing series

length T * as a function of p. A five-game series, for instance, would be
optimal if the better team has a 70 percent chance of winning each
match. The optimal series length is increasing in the proximity of p to
one-half. The intuition behind this is simple. When neither team is
much better than the other, the cost of a large T becomes small ðm0 does
not move far from m

*
Þ while the benefit of releasing information slowly

remains.

C. Sequential Contests
The order of sequential primary elections may affect which political can-
didate is ultimately chosen as a party’s nominee for president ðKnight
and Schiff 2007Þ. If voters in late states converge around early winners,
then it surely matters whether Iowa goes first, or New Hampshire, or
Florida. As a number of researchers have analyzed ðe.g., Hummel and
Holden 2012Þ, political parties may want to choose the order of primaries
so as to maximize the expected quality of a nominee.
We now pose a different question: In what order should the states vote

if the goal is to maximize the suspense or surprise of the race? A more
TABLE 1
Suspense- and Surprise-Maximizing Length of a Playoff Series

p

.9 .8 .75 .7 .65 .6 .55 .51

T * 1 1 3 5 11 23 99 2,499

This content downloaded from 128.192.114.19 on Sun, 7 Jun 2015 15:04:34 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


exciting primary season may elicit more attention from citizens, yielding
a more engaged and informed electorate. In order to highlight the rele-

suspense and surprise 249
vant mechanisms, our analysis here will assume that the order of the
primaries does not affect the likelihood that any given candidate wins.
We model a primary campaign as follows. Two candidates, A and B,

compete against each other in a series of winner-take-all state primary
elections. State i has ni delegates and will be won by candidate A with
probability pi. The probability that A wins each state is independent.
Candidate A wins the nomination if and only if she gets at least n* ∈
½0; oini � delegates.
Early states are sure to have a small but positive impact on beliefs

about the nominee, whereas late states have some chance of being ex-
tremely important and some chance of having zero impact. Perhaps
smaller or more partisan states should go first, so that information about
the nominee is revealed as slowly as possible. Or should large swing states
go first, to guarantee that these potentially exciting votes do not take
place after a nominee has already been chosen?
Remarkably, for any distribution of delegates ni, for any set of proba-

bilities pi, for any cutoff n*, the order of the primaries has no effect on
expected suspense or surprise.37 Small or large states, partisan or swing
states—they may go in any order.
This neutrality result applies not only to political primaries but to

many other settings in which a pair of players engage in sequential con-
tests. For instance, in a televised game show, players compete in a vari-
ety of tasks with different amounts of points at stake. Family Feud dou-
bles and then triples the points awarded in later rounds. Our results
imply that this leads to no more total excitement than if the high-stakes
rounds were at the beginning. Likewise, in a typical best of seven sports
series, one advantaged team will be scheduled to play four home games
and three away games. We find that there is an equal amount of suspense
and surprise in the 2–3–2 format of the NBA finals ðtwo home, three
away, then two home gamesÞ as in the 2–2–1–1–1 format of the earlier
NBA playoff rounds.

VIII. Generalizations
In this section we consider more general formulations of preferences
for suspense and surprise. The key feature of suspense is anticipation of
the upcoming resolution of uncertainty. The following framework tries
to capture this key feature while abstracting from particular functional
forms. Say that a function W : DQ→ R is a measure of uncertainty if it is

37 The proof is in App. B.
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strictly concave and equals zero at degenerate beliefs. This definition
is motivated by Blackwell ð1953Þ: assuming that W is concave is equiva-
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lent to assuming that receiving information must, on average, reduce
uncertainty.
Given any measure of uncertainty W, we can define suspense in period

t as some increasing function of the expected reduction in WðmÞ. This
definition captures the fact that a larger amount of information about
to be revealed ði.e., more suspenseÞ is equivalent to a greater expected
reduction in uncertainty. Formally, the agent has a preference for sus-
pense if his payoff isoT

t51uðEt ½WðmtÞ2Wð~mt11Þ�Þ for some measure of un-
certainty W and some increasing, strictly concave function uð�Þ with uð0Þ
5 0.
Our earlier specification of suspense is a special case of this general

framework withW set to residual variance. There are other natural mea-
sures of uncertainty, however, such as entropy: WðmÞ5 2oqm

qlogðmqÞ.
Moreover, state-dependent significance is easily captured by a suitable
modification of W.
As the analysis in Section IV makes clear, our method for characteriz-

ing suspense-optimalmartingales extends to any formulation of suspense
within this general framework. In particular, a martingale is optimal if
and only if ~mt has support on the set Mt 5 fmjWðmÞ5 ½ðT 2 tÞ=T �Wðm0Þg.
Different specifications of the measure of uncertainty simply change the
shape of the Mt sets.
The key feature of surprise is the ex post experience of a change in

beliefs. Thus, one way to generalize a preference for surprise is to con-
sider an arbitrary metric d on the space of beliefs and suppose that sur-
prise in period t is an increasing function of dðmt ; mt21Þ. Alternatively,
surprise might be generated only by unexpected movements in beliefs.
While analytically characterizing the optimal policies may be difficult for
these specifications, we expect that some of the key qualitative features
of the problem—for example, the value of commitment—would still be
present.

IX. Conclusion
One way to test our model would be to examine whether the informa-
tion policies we identify as optimal indeed attract a greater audience
than other policies. More generally, a data set that combines informa-
tion about revealed preference with estimates of belief dynamics would
allow us to directly examine what aspects of belief dynamics generate
entertainment utility.
We have already discussed various ways one can estimate belief dy-

namics: ðiÞ relying on the explicit structure of the data-generating pro-
cess, ðiiÞ using prediction markets, ðiiiÞ estimating probabilities in each
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period on the basis of outcomes of many matches, or ðivÞ eliciting be-
liefs through incentivized laboratory experiments. In principle, it should
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be possible to complement such data with measures of revealed pref-
erence. TV ratings would reveal whether a show becomes more popular
when previous episodes generate more suspense and surprise. Or, de-
tailed data collected by the Nielsen Company could be used to examine
whether the preferences we postulate explain channel-switching be-
havior during a sports game. Similarly, data from casinos could be used
to determine whether suspense and surprise drive gambling behavior.
How suspense, surprise, and other aspects of belief dynamics drive de-
mand for noninstrumental information is fundamentally an empirical
question, one that we hope will be addressed by future research.
Appendix A
Surprise-Optimal Policies

A. Surprise for T < 3

Let the function fT be defined by

fT ðm0; mÞ; jm0 2 mj1WT21ðm0Þ:
The notation f 0ðm0; mÞT will indicate the derivative with respect to the first com-
ponent.

The recursive problem of maximizing surprise in a given period, starting from
belief mt at time t, can be written as

WT2tðmtÞ5 max
ml≤mh

pfT2tðmh ; mtÞ1 ð12 pÞfT2tðml ; mtÞ; ðA1Þ

where p is the probability given by pmh 1 ð12 pÞml 5 mt. Without loss of gener-
ality, ml ≤ m ≤ mh .

We set W0 to be identically zero, and so for any prior m0 in the one-period
problem T 5 1, it is optimal to set ml 5 0 and mh 5 1 so that p 5 m0 and the max-
imized value is

W1ðm0Þ5 2m0ð12 m0Þ:

Consider now the problem for T > 1, starting at period 0 ðwhich can be
embedded as the last T periods of a longer problemÞ. We can derive two first-
order conditions for optimality of the posteriors ðml ; mhÞ, holding the prior m0

constant.38 First, consider moving the pair ðml ; mhÞ in the direction dðml ; mhÞ5
ð1; 2ð12 pÞ=pÞ, that is, moving the posteriors toward one another along the line

38 The objective function is not differentiable when, say, mh 5 m0, but it is straightforward

to show that releasing zero information is never optimal. The differentiability of WT21 will
be verified directly.
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that keeps p, the probability of mh , constant. The derivative of the objective
function in this direction is the inner product

252 journal of political economy
dðml ; mhÞ � ðð12 pÞf 0
T ðml ; m0Þ; pf 0

T ðmh ; m0ÞÞ:
At an optimum, this derivative must be nonpositive and equal to zero in the case
of an interior optimum, that is,

f 0
T ðml ; m0Þ2 f 0

T ðmh ; m0Þ ≤ 0 ðA2Þ

with equality when 0 < ml
< mh

< 1. When the derivatives of fTð� Þ are expanded,
this translates to

d
dml

WT21ðmlÞ2
d
dmh

WT21ðmhÞ ≤ 2 ðA3Þ

with equality in the interior. This condition illustrates the trade-off in deter-
mining whether to reveal more informative signals, increasing current surprise
while decreasing the “stock” of future surprises.

To derive an additional first-order condition, consider moving ml closer to m0,
holding mh constant. The derivative of the objective function in this direction is

dp
dml

½ fT ðmh ; m0Þ2 fT ðml ;m0Þ�1 ð12 pÞ dfT
dml

ðml ; m0Þ;

which must be nonpositive at an optimum and equal to zero when ml
> 0. Sub-

stituting

12 p 5
mh 2 mt

mh 2 ml

and

dp
dml

5
mt 2 mh

ðmh 2 mlÞ2

and rearranging, we obtain

df
dml

ðml ; m0Þ ≤
fT ðmh ; m0Þ2 fT ðml ; m0Þ

mh 2 ml

or, directly in terms of p and WT21,

d
dml

WT21ðmlÞ2
WT21ðmhÞ2WT21ðmlÞ

mh 2 ml

≤ 2ð12 pÞ ðA4Þ

with equality when ml is interior. This condition connects the marginal gain in
continuation value at ml with the “average” continuation value. According to the
condition, the larger the difference between these two measures, the larger should
be the probability 1 2 p of ml .

With these two conditions we can solve the surprise problems for T 5 2 and
T 5 3. First, recall that W1ðmÞ5 2mð12 mÞ, so that W 0

1 ðmÞ5 22 4m. Then, to
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solve the problem for T 5 2, we use equation ðA3Þ to derive 22 4ml 2 ð12 4mhÞ
5 2 or mh 2 ml 5 1=2 at an interior optimum. Substituting this equation into
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equation ðA4Þ yields, after some algebra, ml 5 m0 2 1=4, implying that for any
m0 ∈ ½1=4; 3=4�, the optimal signal is symmetric with ml 5 m0 2 1=4 and
mh 5 m0 1 1=4. In particular, note that when the prior is m0 5 3=4, there is full
revelation of the state 1, that is, mh 5 1 in the first period.

Indeed, when the prior m0 ≥ 3=4, there is no interior solution and equation ðA3Þ
holds with a strict inequality. In that case we have mh 5 1 andW1ðmhÞ5 0, which by
equation ðA4Þ yields ml 5 p 5 12

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 m0

p
. By symmetry, when m0

< 1=4, we have
ml 5 0 and mh 5

ffiffiffiffiffi
m0

p
. This gives the following value function:

W2ðmÞ5
4mð12 mÞ if m ∈ ½0; 1=4�
1=81 2mð12 mÞ if m ∈ ½1=4; 3=4�
4ð12 mÞð12 ffiffiffiffiffiffiffiffiffiffiffiffi

12 m
p Þ if m ∈ ½3=4; 1�:

8<
:

The surprise-maximizing prior is m0 5 1=2, after which the optimal signals are
ðml ; mhÞ5 ð1=4; 3=4Þ in the first period followed by full revelation in the last
period.

For the T 5 3 problem, fix a prior of one-half. It can be verified that W2ð� Þ is
differentiable,39 and so the first-order conditions apply. By symmetry, the optimal
signal starting from a prior m0 5 1=2 is also symmetric, and thus equation ðA4Þ
reduces to ðd=dmlÞWT21ðmlÞ5 1 so that ml 5 1=4 and by symmetry mh 5 3=4. This
yields a surprise payoff at the prior m0 5 1=2 of W3ð1=2Þ5 3=4. In fact, it can be
shown thatW3ðmÞ ≤ 3=4 for all m. So in fact the prior of m0 5 1=2maximizesW3ðm0Þ
over all possible m0.

40

B. Proof of Proposition 3
As shown by Mertens and Zamir ð1977, eq. 3.5Þ, the function f satisfies the
differential equation f

00ðmÞ521=fðmÞ. We will make use of this fact below, for
example, in observing that f is concave.

Optimal policies are history-independent conditional on the current belief
and the number of periods remaining, so without loss of generality we will show
that jm1 2 m0j < e for any m0, if the number of periods T is large enough. In
particular, we will show that ml converges to m0 as T gets large and that this
convergence is uniform over m0.

41 The argument for mh would follow similarly.
Step 1: For each m and m0, for fixed T, the function fT ðm0; mÞ is in the interval

½WT21ðm0Þ; WT21ðm0Þ1 1�. So by proposition 2, there exists a > 0 such that, for all
m, m0 ∈ ½0; 1�,

39 In particular, the left and right derivatives at one-fourth and three-fourths are equal.

40 FromtheexpressionforW2ðmÞ, we see thatW2ðmÞ ≤ 1=81 2mð12 mÞ for each m; it is equal

on the interval ½1=4; 3=4� and below at other points. In other words, W2ðmÞ ≤ 1=81W1ðmÞ.
By the recursivedefinitionof WT , then,W3ðmÞ ≤ 1=81W2ðmÞ. This implies that W3ðmÞ ≤ 1=41
2mð12 mÞ, which has a maximum value of three-fourths at m5 1=2.

41 There may exist optimal policies that are not binary. If we take ml to be the infimum of
all points in the support, then an identical argument shows that ml → m0.
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 1

p
fðm0Þ2 a ≤ fT ðm0; mÞ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 1

p
fðm0Þ1 a:
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Consider the concavification of fT with respect to m0:

f̂T ðm0; mÞ;maxfz : ðm0; zÞ ∈ coð fT ðm0; mÞÞg;

where coð fT ðm0; mÞÞ is the convex hull of the graph of fT ðm0; mÞ viewed as a func-
tion of m0. The function f̂T ðm0; mÞ is concave in m0 and is in fact the pointwise
minimum of all concave functions that are pointwise larger than fT ðm0; mÞ ðRock-
afellar 1997, chap. 12Þ. Since the function f is concave, we also have

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 1

p
fðm0Þ2 a ≤ f̂T ðm0; mÞ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 1

p
fðm0Þ1 a; ðA5Þ

and all three terms are concave in m0.
Step 2: It is immediate from the definitions and from the concavity of f̂T ðm; mÞ

that

WT ðmÞ5 f̂T ðm; mÞ5 max
ml ≤mh

p f̂T ðmh ; mÞ1 ð12 pÞf̂T ðml ; mÞ;

that is, we can replace fT with f̂T in the optimization problem in equation ðA1Þ.
Therefore, any optimal ml and mh will satisfy the first-order condition given in

equation ðA2Þ:
f̂ 0
T ðml ; m0Þ5 f̂ 0

T ðmh ; m0Þ;
where, in case f̂T is not differentiable, f̂ 0

T ðm0; m0ÞT is some supergradient of
f̂ ðm0; m0Þ with respect to m0. By concavity, since these supergradients are equal,
the function f̂ ðm0; m0Þ is linear between ml and mh and the supergradients are equal
to the derivative at m0 5 m:

f̂ 0
T ðml ; m0Þ5 f̂ 0

T ðm0; m0Þ5 f̂ 0ðmh ; m0Þ: ðA6Þ

Step 3: Refer to figure A1. Because f̂T ðm0; mÞ is concave, its graph lies every-
where below its tangent line ði.e., the derivativeÞ at m0 5 m. Because of the bound
in equation ðA5Þ, its graph must also lie between the graphs of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 1

p
fðm0Þ2 a

and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 1

p
fðm0Þ1 a. Thus, an upper bound for f̂ 0

T ðm0; m0Þ is the slope of the
line through ðm0;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 1

p
fðm0Þ1 aÞ, which is tangent to the function

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 1

p
�fðm0Þ2 a. Let m0 5 ma

< m be the point of tangency, and let mb
< ma be the point of

intersection with the graph of
ffiffiffiffi
T

p
fðm0Þ1 a.

By equation ðA6Þ, ml satisfies f̂
0ðml ; m0Þ5 f̂ 0ðm0; m0Þ. Suppose ml were less than

mb . Then, by the concavity of f̂ T ðm0; mÞ, the value at ma , that is, f̂ T ðma ; mÞ, would be
less than

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 1

p
fðmaÞ2 a. Hence mb is a lower bound for ml . We will show that

mb → m0, uniformly in m0, as T approaches infinity.
Step 4: By construction of ma ,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 1

p
fðmaÞ2 a1 ðm2 maÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 1

p
f0ðmaÞ5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 1

p
fðm0Þ1 a;
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which we can rewrite as follows:

FIG. A1.—The dotted line shows a possible f ðm0; mÞ curve as a function of m0 and the
dashed line shows its concavification f̂ ðm0; mÞ. For any f bounded between the top and bot-
tom curves, ml must be greater than mb .
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 1

p
½fðmaÞ1 ðm0 2 maÞf0ðmaÞ2 fðm0Þ�5 2a: ðA7Þ

Because f
00ðmÞ521=fðmÞ, it holds that f00ðmÞ is everywhere weakly below42

f00 5 max
m

	
2

1
fðmÞ



52

1

f
1
2

� � < 0;

and we obtain by simple integration that

fðm0Þ ≤ fðmaÞ1 ðm0 2 maÞf0ðmaÞ1
1
2
ðm0 2 maÞ2f00:

Substituting into equation ðA7Þ

2a5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 1

p
½fðmaÞ1 ðm0 2 maÞf0ðmaÞ2 fðm0Þ�

≥ 2
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 1

p
ðm0 2 maÞ2f00

42 The function fð1=2Þ evaluates to the height of the standard normal pdf at zero, i.e.,
1=

ffiffiffiffiffiffi
2p

p
.
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and rearranging, we obtain ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiv
256 journal of political economy
m0 2 ma ≤
2a

2
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 1

p
f00

uut : ðA8Þ

Analogous manipulations applied to mb yield

ma 2 mb ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a

2
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 1

p
f00

vuut : ðA9Þ

Combining equations ðA8Þ and ðA9Þ, we obtain

m0 2 ml ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a

2
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 1

p
f00

vuut :

The right-hand side is independent of m0 and goes to zero as T goes to infinity.
This completes the proof. QED

Appendix B

Constrained Information Policies

Throughout this appendix, we set surprise in period t to be jmt 2 mt21j and sus-
pense to be the standard deviation of ~mt11.

A. Number of Games in a Finals Series
Proposition 4. For each X ∈ f1, . . . , N g, define SðX, N Þ by
SðX ; N Þ5 NpX21ð12 pÞN2X N 2 1
X 2 1

� �
:

Then if the favored team needs to win X out of the remaining N games, the re-

maining suspense is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð12 pÞp

SðX ; N Þ. The surprise is 2pð1 2 pÞSðX, N Þ.
Proof. Given X and N, the belief that the favored team wins the series is

mðX ; N Þ. If the team wins the current game, the belief jumps to mðX 2 1; N 2 1Þ;
if the team loses, it falls to mðX ; N 2 1Þ. Let

DðX ; N Þ5 mðX 2 1; N 2 1Þ2 mðX ; N 2 1Þ

be the range of next-period beliefs. Then DðX ; N Þ is equal to the probability that
the current game is marginal, that is, that the favored teamwins exactly X2 1 out of
the following N 2 1 games:

DðX ; N Þ5 pX21ð12 pÞN2X N 2 1
X 2 1

� �
:
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If the favored team wins, the belief jumps by
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mðX 2 1; N 2 1Þ2 mðX ; N Þ5 ð12 pÞDðX ; N Þ:

If the favored team loses, the belief falls by

mðX ; N Þ2 mðX ; N 2 1Þ5 pDðX ; N Þ:

The expected surprise in the current period can thus be calculated to be
2pð12 pÞDðX ; N Þ, and the suspense is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð12 pÞp

DðX ; N Þ.
Define SðX, N Þ by induction on N, with SðX, N Þ 5 0 if X 5 0 or X > N and

SðX ; N Þ5 DðX ; N Þ1 pSðX 2 1; N 2 1Þ1 ð12 pÞSðX ; N 2 1Þ

5 pX21ð12 pÞN2X
N 2 1

X 2 1

 !
1 pSðX 2 1; N 2 1Þ

1 ð12 pÞSðX ; N 2 1Þ:

The suspense and surprise payoffs are constructed by the same recursion,
inserting the appropriate coefficient on DðX ; N Þ. Suspense is thus

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð12 pÞp

�SðX ; N Þ and surprise is 2pð1 2 pÞSðX, NÞ. It remains only to show that SðX, N Þ
has the explicit formula of

NpX21ð12 pÞN2X N 2 1
X 2 1

� �
:

This follows from a simple induction on N, applying the binomial identity

n
k

� �
5

n 2 1
k 2 1

� �
1

n 2 1
k

� �
:

QED

B. Political Primaries
Consider two states, i and j, which are holding consecutive primaries. Without
loss of generality, suppose that i has weakly more delegates than j: ni ≥ nj. Can-
didate A has a probability pi of winning state i and a probability pj of winning
state j.

Let si and sj indicate the winners of the respective state primaries, A or B. Given
past states’ primary outcomes and taking expectations over the future states’
primary outcomes, let candidate A have a probability msi sj of winning the nomi-
nation given vote realizations si and sj.
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We seek to show that suspense and surprise are identical whether i votes
before j or after. If we cannot affect expected suspense or surprise by swapping
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any such pair of states, then the suspense and surprise must be independent of
the order of votes.

By the structure of the game, the candidate who wins a primary has a weakly
higher chance of winning the nomination. That implies a monotonicity condi-
tion mBB ≤ mBA, mAB ≤ mAA. Because ni ≥ nj, it also holds that mBA ≤ mAB .

Given these definitions, the belief prior to the two primaries is

ð12 piÞð12 pjÞmBB 1 pið12 pjÞmAB 1 ð12 piÞpjmBA 1 pipjmAA:

If state i has its primary first, then the belief conditional on outcome si is
pjmsiA 1 ð12 pjÞmsiB . If state j has its primary first, then the belief conditional on
outcome sj is pimAsj 1 ð12 piÞmBsj .

After some algebra, we can express the expected surprise associated with either
ordering as follows:

2fð12 pjÞpjðmBA 2 mBBÞ2 p2
i ½ð211 pjÞmBB 1 mAB 2 pjðmBA 1 mAB 2 mAAÞ�

1 pi ½ð211 pjÞ2mBB 2 mAB 2 ð221 pjÞpjðmBA 1 mAB 2 mAAÞ�g:

For either ordering, the expected suspense payoff is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pið12 piÞ

q
½2ð12 piÞmBB 1 mBA 2 piðmBA 1 mAB 1 mAAÞ�

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pjð12 pjÞ

q
½2ð12 pjÞmBB 1 mAB 2 pjðmBA 1 mAB 1 mAAÞ�:
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