RECOMMENDER SYSTEMS AS MECHANISMS FOR SOCIAL
LEARNING*

YEON-K0O CHE AND JOHANNES HORNER

This article studies how a recommender system may incentivize users to learn
about a product collaboratively. To improve the incentives for early exploration,
the optimal design trades off fully transparent disclosure by selectively overrec-
ommending the product (or “spamming”) to a fraction of users. Under the optimal
scheme, the designer spams very little on a product immediately after its release
but gradually increases its frequency; she stops it altogether when she becomes
sufficiently pessimistic about the product. The recommender’s product research
and intrinsic/naive users “seed” incentives for user exploration and determine the
speed and trajectory of social learning. Potential applications for various Inter-
net recommendation platforms and implications for review/ratings inflation are
discussed. JEL Codes: D82, D83, M52.

I. INTRODUCTION

Most of our choices rely on the recommendations of others.
Whether selecting movies, picking stocks, choosing hotels, or shop-
ping online, shared experiences can help us make better deci-
sions. Internet platforms are increasingly organizing user rec-
ommendations for various products. Amazon (books) and Netflix
(movies) are two well-known recommenders, but there is a rec-
ommender for almost any “experience” good: Pandora for music,
Google News for news headlines, Yelp for restaurants, TripAdvisor
for hotels, RateMD for doctors, and RateMyProfessors for profes-
sors, to name just a few. Search engines such as Google, Bing, and
Yahoo crowdsource users’ search experiences and “recommend”
relevant websites to other users. Social media such as Facebook
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and LinkedIn do the same for another quintessential experience
good—friends.

These platforms play a dual role in social learning—
discovering new information (“exploration”) and disseminating it
to users (“exploitation”). How the latter role can be performed
effectively through methods such as collaborative filtering has re-
ceived ample attention and remains a primary challenge for rec-
ommender systems.! The former role has received comparatively
less attention. However, it is also important. Many product titles
(e.g., of songs, movies, or books) are fairly niche and ex ante unap-
pealing,? so that few people will find them worthwhile to explore
on their own even at a zero price.® Nonetheless, exploring these
products can be socially valuable, because some of them are ulti-
mately worthy of consumption and their “discovery” will benefit
subsequent users. However, the lack of sufficient initial discov-
ery, known as the “cold start” problem, often leads to the demise
of worthy products and startups. The challenge lies in the fact
that users, on whom the recommender relies for discovery, do not
internalize the benefit accruing to future users.

The current article studies how a recommender may design
its policy to overcome that challenge. Specifically, we consider a
model in which a designer (e.g., a platform) decides whether to
recommend a product (e.g., a movie, a song, or breaking news)
to users who arrive continuously after the product’s release. The
designer’s recommendation is based on the information she col-
lects from internal research or user feedback, both of which take

1. Recommenders employ a variety of algorithms to predict users’ prefer-
ences based on their consumption histories, their demographic profiles and their
search and click behaviors. The Netflix Prize of 2006-2010 illustrates the chal-
lenge associated with finding an efficient algorithm to make accurate predictions
(see https://en.wikipedia.org/wiki/Netflix_Prize). See Schafer, Konstan, and Riedl
(1999) and Bergemann and Ozmen (2006) for stylized descriptions of collaborative
filtering.

2. Obscure titles become increasingly significant due to the proliferation of
self-production. For instance, self-publishing, once considered vanity publishing,
has expanded dramatically in recent years with the availability of print on demand
and e-books. Bowker Market Research estimates that more than 300,000 self-
published titles were issued in 2011 (New York Times, “The Best Book Review
Money Can Buy,” August 25, 2012). While still in its infancy, 3D printing and
similar technologies anticipate a future that will feature an even greater increase
in self-manufactured products.

3. For subscribers of the platform, the marginal price of streaming titles is
essentially zero. However, users face the nonzero opportunity cost of forgoing other
valuable activities, including streaming other better-known titles.
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the form of breakthrough news: when the product is of high
quality, the designer receives a signal confirming it (“good news”)
at a Poisson rate proportional to the number of users having con-
sumed that product. We then identify an optimal recommendation
policy, assuming that the designer maximizes user welfare and
has full commitment power. We later justify these features in the
context of Internet recommender systems.

It is intuitive and shown to be optimal that a product must
be recommended to all subsequent users if the designer receives
good news. The key question is whether and to what extent she
(the designer) should recommend the product even when no news
has arrived. This latter type of recommendation, called “spam,™ is
clearly undesirable from an exploitation standpoint, but it can be
desirable from an exploration standpoint. Indeed, ignoring user
incentives, a classical prescription from the bandit literature calls
for a blast of spam, or full user exploration, even against the in-
terest of the user as long as the designer’s belief about the product
is above a certain threshold. However, such a policy will not work,
for users will ignore the recommendation and refuse to explore if
their prior belief is unfavorable. For the policy to be incentive com-
patible, the users’ beliefs must be sufficiently favorable toward the
product when called on to explore that product. The designer can
create such beliefs by sending spam at a suitably chosen rate.

The exact form of spam and its optimal magnitude depends
on the specific context. We explore three different realistic con-
texts. The first is when the designer can privately send a person-
alized recommendation of a product to each agent. In this case,
the optimal policy selects a fraction of randomly selected agents to
receive spam. In the second setting of interest, the designer’s rec-
ommendations become publicly observable to all agents arriving
thereafter. In this case, spam takes the form of a once-and-for-all
recommendation campaign (or product ratings), which lasts for
a certain time. The third is when the designer privately recom-
mends horizontally differentiated products to agents with hetero-
geneous preferences. In this setting, the optimal policy determines
the breadth of agent types receiving spam on either product.

For each of these settings, the optimal recommender policy
involves hump-shaped dynamics. In particular, the optimal rec-
ommendation must “start small.” Immediately after the release

4. Throughout, the term “spam” means an unwarranted recommendation,
more precisely a recommendation of a product that has yet to be found worthy of
said recommendation.

020z Ateniged | uo 1senb Aq £6289.1/1 /8/Z/SE | AOBNSqE-ajoiue/alb/woo dno-olwspese//:sdpy Woly papeojumoq



874 QUARTERLY JOURNAL OF ECONOMICS

of a product, few, if any, will have explored the product, so rec-
ommending this newly released product is likely to be met with
skepticism. Therefore, the recommender can spam very little in
the early stages, and learning occurs at a slow pace. Accordingly,
the recommender initially selects a small fraction of agents for
personalized recommendations (in the private recommendation
context), a low probability of triggering the once-and-for-all recom-
mendation campaign (in the public recommendation context), and
anarrow bandwidth of agents for product matching (in the hetero-
geneous preferences context). Over time, however, the recommen-
dation becomes credible, so the designer selects a higher fraction
of agents, a higher probability, or an increased breadth of agents
for spam, depending on the contexts. Consequently, the pace of
learning accelerates. In the first two contexts, the absence of news
eventually makes the recommender sufficiently pessimistic about
the product’s quality. At that point, the designer abandons spam
altogether.

The main insights and findings are shown to be robust to a
number of extensions: vertical heterogeneity in user preferences,
user uncertainty about the product release time, the presence
of behavioral types that follow the designer’s recommendations
without any skepticism, the designer’s investment in learning,
and a more general signal structure.

Although our analysis is primarily normative, it has poten-
tial applications in several aspects of Internet platforms. Search
engines determine the display order of web pages based on algo-
rithms such as PageRank, which rely heavily on users’ past search
activities. Hence, they are susceptible to the entrenchment prob-
lem: the pages that users found relevant in the past are ranked
highly and are thus displayed more prominently, attracting more
visits and reinforcing their prominent rank, whereas newly cre-
ated sites are neglected regardless of their relevance. One sug-
gested remedy is the random shuffling of the display order to
elevate the visibility of underexposed and newly created pages
(Pandey et al. 2005). This is indeed a form of spam, as suggested
by our optimal policy. Although our analysis is consistent with
this remedy, it also highlights the incentive constraint: the fre-
quency of random shuffling must be kept at a low level so that the
searchers enlisted to “explore” these untested sites will find them
ex ante credible.

A similar concern about user incentives arises when newly
launched social media platforms try to recruit users via
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unsolicited “user-initiated” invitations. Some social media sites
are known to have “blasted” invitations to a mass of unsuspecting
individuals, often unbeknownst to the inviters through some dubi-
ous form of consent.? Our theory cautions against such aggressive
spam campaigns, for they will undermine the credibility of the
recommender. For invitees to perceive that their acquaintances
have initiated unsolicited invitations, the frequency of invitations
must be kept at a credible level.®

A similar implication can be drawn for reviews/ratings infla-
tion, which is common in many online purchase sites.” Ratings
are often inflated by sellers—as opposed to the platforms—who
have every reason to promote their products, even against the
interests of consumers.® However, platforms have instruments at
their disposal to control the degree of ratings inflation, such as
filters that detect false reviews, requiring users to verify their
purchase before posting reviews and allowing them to vote for
“helpful” reviews.? Our analysis suggests that some degree of in-
flation is desirable from the perspective of user exploration, but
keeping inflation under control is in the best interest of the plat-
form/recommender to maintain its credibility.

Finally, our article highlights the role of internal research
conducted by the recommender. An example of internal research
is Pandora’s music genome project, which famously hires musi-
cologists to classify songs according to some 450 attributes. While
such research is costly, it can provide significant benefits. As we
show later, internal research serves as a substitute for costly user

5. Indeed, users may turn against such social media sites. A class action suit
filed under Perkins v. LinkedIn alleged that LinkedIn’s “Add Connections” feature
allowed the platform to scrape users’ email address books and send out multiple
messages reminding recipients to join these users’ personal networks. LinkedIn
settled the suit for $13 million. See “LinkedIn will pay $18M for sending those
awful emails,” Fortune, October 5, 2015.

6. Note, however, that Section VII.C suggests that such a policy may be optimal
for platforms facing a large fraction of naive invitees.

7. Jindal and Liu (2008) find that 60% of the reviews on Amazon have a rating
of 5.0, and approximately 45% products and 59% of members have an average
rating of 5.

8. Luca and Zervas (2016) suggest that as much as 16% of Yelp reviews are
suspected to be fraudulent.

9. Mayzlin, Dover, and Chevalier (2014) find that Expedia’s requirement that
a reviewer verify her stay to review a hotel resulted in fewer false reviews at
Expedia compared with TripAdvisor, which has no such requirement.
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exploration and enhances the recommender’s credibility and helps
speed/scale up users’ exploration.

The rest of the article is organized as follows. Section II uses
a simple example to illustrate the main idea of the paper. Section
IIT introduces a model. Sections IV, V, and VI characterize the
optimal policy in three different contexts, serving as the main
analysis. Section VII extends the results in a variety of ways.
Section VIII describes related literature. Section IX concludes.

II. ILLUSTRATIVE EXAMPLE

We begin with a simple example that highlights the main
idea of incentivized exploration. Suppose a product, say a movie,
is released at time ¢ = 0, and a unit mass of agents arrive at each
time ¢ = 1, 2. The quality of the movie is either “good” (w = 1),
in which case the movie yields a surplus of 1 to each agent, or
“bad” (w = 0), in which case it yields a surplus of 0. The quality
of the movie is unknown at the time of its release, with prior
p° := Pr[w = 1] € [0, 1]. Watching the movie costs each agent ¢ €
(p°, 1); thus, without further information, the agents would never
watch the movie.

At time ¢ = 0, the designer receives a signal o € {g, n} (from its
marketing research, for example) about the quality of the movie
with probabilities:

£0 ifw= 1;

P = =
rlo =g ol :0 ifw =0,

and Pr[c =n | w] =1 — Pr[o = g | w]. In other words, the designer
receives good news only when the movie is good; but she also may
receive no news (even) when the movie is good.'”

Suppose the designer has received no news at ¢ = 0 but a
fraction « of agents watch the movie at ¢ = 1. Then, the designer

10 Thus, it follows that the designer’s posterior at time ¢ = 1 on w = 1is 1
with a probability of pgp° (in the event that she receives good news) and

(1 - po)p°

P oo+ 1 -0

with a probability of 1 — pop® (in the event that she receives no news).
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again receives conclusively good news with probability:

Pr[ | a ifw=1;
ro=glel=1, i, —o,

The feature that the signal becomes more informative with a

higher fraction o of agents experimenting at ¢ = 1 captures the

learning benefit that they confer to the ¢ = 2 agents.

The designer commits to a recommendation policy that max-
imizes social welfare. Specifically, she recommends the movie to
a fraction of agents in each period based on her information at
that point in time.!! The designer discounts the welfare in period
t = 2 by a factor § € (0, 1).

The designer’s optimal policy is then as follows. First, the
designer is truthful at time ¢ = 2, as lying can only reduce wel-
fare and can never improve the incentive for experimentation at
t = 1. Consider now time ¢ = 1. If good news has arrived, the de-
signer would recommend the movie to all agents. Suppose no news
has been received but the designer nevertheless recommends—or
“spams”—to a fraction « of the agents. The agents receiving the
recommendation cannot determine whether the recommendation
is genuine or spam; instead, they would form a posterior:

_ pop® +ap®(1 — po)
pop°® + (1 — pop®a”

Pi(o):

If the designer spams to all agents (i.e., « = 1), then they will
find the recommendation completely uninformative, and hence
P1(1) = p°. Since p° < c, they would never watch the movie. By
contrast, if the designer spams rarely (i.e., « >~ 0), then P1(a) >~ 1,
i.e., they will be almost certain that the recommendation is
genuine. Naturally, the agents receiving a recommendation will

11 The designer would not gain from a stochastic recommendation policy. To
see this, compare two choices: i) the designer recommends the movie to a fraction
o of agents, and ii) the designer recommends it to all agents with probability «. For
agents in ¢ = 1, the two options are the same in terms of welfare and thus in terms
of incentives. For agents in ¢ = 2, the good news is learned with probability p°(p¢ +
(1 — pp)a) in either way. This equivalence means that public recommendation en-
tails no loss. This equivalence holds only because no experimentation is prescribed
in¢ =2, and breaks down in our general model where experimentation is prescribed
over a duration of time, with the optimal spammed fraction featuring temporal
correlation.
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definitely watch the movie in this case. Because the recom-

mendation is more credible the less the designer spams, P;(«)

is decreasing in «. In particular, there is a maximal fraction

q = Lo’ of agents who can be induced to experiment

" c(1=pop”)—p°(1—po) :
Social welfare,

W(a) := p°(po + (1 — po)a)(1 — e)(1 + 8) — (1 — p°)e,

consists of the benefit from the good movie being recommended
(the first term) and the loss borne by the ¢ = 1 agents from a bad
movie being recommended (the second term). In particular, it also
includes the benefit experimentation by the ¢ = 1 agents confers
to the ¢ = 2 agents (captured by the term p°(1 — pg)a(1 — ¢)8).

The optimal policy is to spam up to &, if W is increasing in «,
i.e., if the social value of experimentation at date 1 justifies the
cost:

0~ A0 . ¢
(L L G T S s s wp

Note that the right-hand side is strictly less than ¢ when py < 1%5

In that case, if p° € (p°, ¢), the designer will spam some of the
agents at ¢ = 1 to consume against their myopic interest.

III. MODEL

Our model generalizes the example in terms of its timing and
information structure. A product is released at time ¢ = 0, and,
for each time ¢ € [0, c0), a unit mass of agents arrives and de-
cides whether to consume the product. The agents are assumed
to be myopic and (in the baseline model) ex ante homogeneous.
Consuming the good costs each agent ¢ € (0, 1), which can be the
opportunity cost of time spent or the price charged. The product
is either “good,” in which case each agent derives the (expected)
surplus of 1, or “bad,” in which case the agent derives the (ex-
pected) surplus of 0. The quality of a product is a priori uncertain
but may be revealed over time.'? At time ¢ = 0, the probability of

12. The agents’ preferences may involve an idiosyncratic component that is
realized ex post after consuming the product; the quality then captures only their
common preference component. The presence of an idiosyncratic preference com-
ponent does not affect the analysis because each agent must decide based on the
expected surplus that he will derive from his consumption of the product.
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the product being good, or simply “the prior,” is p°. We consider
all values of the prior, although the most interesting case will be
p° € (0, ¢), which makes nonconsumption myopically optimal.
Agents do not observe previous agents’ decisions or their ex-
periences. Instead, the designer mediates social learning by col-
lecting information from past agents or her own research and
disclosing all or part of that information to the arriving agents.

III.A. The Designer’s Signal

The designer receives information about the product in the
form of breakthrough news. Suppose a flow of size « > 0 con-
sumes the product over some time interval [¢, ¢ + d¢). Then, the
designer learns during this time interval that the product is “good”
with probability A(p + «)dt if the product is good (w = 1) and with
0 probability if the product is not good (w = 0), where A > 0
measures the rate at which user consumption produces break-
through news and p > 0 is the rate at which the designer ob-
tains the information regardless of the agents’ behaviors.!® In a
reduced form, the signal structure describes the extent to which
consumers who explore a product contribute to a recommender’s
learning about that product.!* The background learning, param-
eterized by p, can arise from the designer’s own product research
(e.g., Pandora’s music genome project). It may also arise from a
flow of fans who do not mind exploring the product; that is, they
face a zero cost of exploration. The designer begins with the same
prior p° as the agents, and the agents do not have access to free
learning.

III.B. The Designer’s Recommendation Policy

Based on the information received, the designer provides feed-
back to the agents. Since agents’ decisions are binary, without
loss of generality, the designer simply decides whether to recom-
mend the product. The designer commits to the following policy: at
time ¢, she recommends the product to a fraction y; € [0, 1] of (ran-
domly selected) agents if she learns that the product is good, and

13. Section VILE extends our model to allow for (conclusively) bad news and
(conclusively) good news. Our qualitative results continue to hold in this more
general environment.

14. Avery, Resnick, and Zeckhauser (1999) and Miller, Resnick, and Zeck-
hauser (2004) take a structural approach to elicit honest reviews via monetary
incentives.
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she recommends the product to or spams a fraction «; € [0, 1] if
no news has arrived by ¢. The recommendation is private in the
sense that each agent observes only the recommendation made to
him; that is, he does not observe recommendations made to the
others in the past or present. (We consider public recommenda-
tions in Section V.) We assume that the designer maximizes the
intertemporal net surplus of the agents, discounted at rate r > 0,
over the (measurable) functions («, y), where o: = {e;}; > 0 and y:

= {vt}e >0

II1.C. The Designer’s Beliefs

The designer’s information at time ¢ > 0 is succinctly summa-
rized by the designer’s belief about w = 1, which is 1 if good news
has arrived by that time or some p; € [0, 1] if no news has arrived
by that time. The “no news” posterior, or simply posterior p;, must
evolve according to Bayes’s rule. Specifically, suppose for time
interval [¢, ¢ + dt), (total) exploration occurs at rate u; = p + oy,
where p is background learning and o; is the flow of agents explor-
ing at time ¢. If no news has arrived by ¢ + d¢, then the designer’s
updated posterior at time ¢ + d¢ must be

pe(1 — Ao + o) dt)
p(l=xp+a)d)+1—p;

p:+dp: =

Rearranging and simplifying, the posterior must follow the law of
motion:

(2 pr = —)»(/O + ott)pt(l - pt),

with the initial value at ¢ = 0 given by the prior p°. Notably, the
posterior decreases as time passes, as “no news” leads the designer
to become pessimistic about the product’s quality.

III.D. Agents’ Beliefs and Incentives

In our model, agents do not directly observe the designer’s in-
formation or her beliefs. However, they can form a rational belief
about the designer’s beliefs. They know that the designer’s beliefs
are either 1 or p;, depending on whether good news has been re-
ceived by time ¢. Let g; denote the probability that the designer has
received good news by time ¢. This probability g; is pinned down
by the martingale property, that is, that the designer’s posterior
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must, on average, equal the prior:
(3) g 1+(1-g)p =p’.

Notably, g; rises as p; falls; that is, the agents find it increasingly
probable that news has arrived as time progresses.

In addition, for the policy (¢, y) to be implementable, the
agents must have an incentive to follow the recommendation.!®
Because the exact circumstances surrounding the recommenda-
tion (whether the agents receive the recommendation because of
good news or despite no news) are kept hidden from the agents,
their incentives for following the recommendation depend on their
posterior regarding the designer’s information:

&tve + (1 —ga; py
g+ 1 —ga

q(py) ==

The denominator accounts for the probability that an agent will
be recommended to consume the product, which occurs if either
the designer receives good news (the first term) or the designer
receives no news but selects the agent for spam (the second term);
the numerator accounts for the probability that the agent receives
a recommendation when the product is good. An agent will have
an incentive to consume the product if and only if the posterior
that the product is good is no less than the cost:

4) q:(p) > c.

III.LE. The Designer’s Objective and Benchmarks

The designer chooses a (measurable) policy (o, ) to maximize
social welfare, namely,

Wla, y) := / e gy (1 —c)dt + / e (1 —g)a(p, —c)dt,
>0

0

where (p;, g;) must follow the required laws of motion: equa-
tions (2) and (3).'® Welfare consists of the discounted value of

15. There is also an incentive constraint for the agents not to consume the
product when the designer does not recommend it. Because this constraint will not
be binding throughout—because the designer typically desires more exploration
than the agents—we ignore it.

16. We allow the designer to randomize over (a, y), although our proof of
Proposition 1 in Appendix A shows that such a policy is never optimal.
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consumption—1 — ¢ in the event of good news and p; — ¢ in the
event of no news—for those the designer recommends to consume
the product.

To facilitate the characterization of the optimal policy, it is
useful to consider the following benchmarks:

i. No social learning: the agents receive no information from
the designer; hence, they decide solely based on the prior
p°. When p° < ¢, no agent consumes.

ii. Full transparency: the designer truthfully discloses her
information—or her beliefs—to the agents. Formally, full
disclosure is implemented through the policy of y; =1 and
o; = 1p,>¢), which fulfills the exploitation goal of the de-
signer, maximizing the short-term welfare of the agents.

iii. First-best policy: the designer optimizes her policy («, y)
to maximize WV subject to equations (2) and (3). By ig-
noring the incentive constraint (4), the first-best captures
the classic trade-off between exploitation and exploration,
as studied in the bandit literature (see Rothschild 1974,
Gittins, Glazebrook, and Weber 2011). Comparing first-
best and full transparency thus highlights the designer’s
exploration goal.

iv. Second-best policy: in this regime, the focus of our study,
the designer optimizes her policy (o, y) to maximize
W subject to equations (2), (3), and (4). Comparing
second-best and first-best policies highlights the role of
incentives.

III.F. Applicability of the Model

The salient features of our model conform to Internet plat-
forms that recommend products such as movies, songs, and news
headlines. First, the assumption that the recommender is benev-
olent is sensible for platforms that derive revenue from subscrip-
tion fees (e.g., Netflix and Pandora) or advertising (e.g., Hulu),
as maximizing subscriptions leads them to maximize the gross
welfare of users.!”

17. An Internet platform earning ad revenue from user streaming may be
biased toward excessive recommendations. Even such a platform recognizes that
recommending bad content will result in users leaving the platform, and it will try
to refrain from excessive recommendations.
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Second, the assumption of recommender commitment power
is plausible if the recommender can resist the temptation of over-
recommending a product (to a level that would result in users
ignoring its recommendations). A recommender can achieve com-
mitment power by building a good reputation. If a recommender
handles multiple titles, a simple way to build reputation is to
limit the number of titles he or she recommends;'® users may
then “punish” deviation by ignoring future recommendations. An-
other way to build reputation is by hardwiring a recommendation
technology. For example, Pandora’s music genome project puts
a severe bottleneck on the number of tunes that can be recom-
mended.!?

Third, our model does not consider monetary incentives for
exploration. Indeed, monetary incentives are rarely used to com-
pensate for the online streaming of movies, music, and news items
or for user feedback on these items.?’ Monetary incentives are
unreliable if the quality of exploration is difficult to verify. For in-
stance, paying users to stream a movie or a song or to post a review
does not necessarily elicit genuine exploration. Even worse, mone-
tary incentives may lead to a biased reviewer pool and undermine
accurate learning.

Finally, a central feature of our model is “gradual” user feed-
back, which makes social learning nontrivial. This feature may
result from noise in the reviews due to unobserved heterogeneity

18. If the recommender handles many products that are, say, identically dis-
tributed with varying release times, the optimal policy will involve recommending
a constant fraction of the products each time. Netflix, for instance, used to rec-
ommend 10 movies to a user, and it currently presents a “row” of recommended
movies for each genre.

19. An industry observer comments that “the decoding process typically takes
about 20 minutes per song (longer for dense rap lyrics, five minutes for death
metal) and Westergren points out ‘Ironically, I found over the years that the fact
that we couldn’t go fast was a big advantage. ... The problem that needs solving
for music is not giving people access to 2.5 million songs. The trick is choosing
wisely” (Linda Tischler, “Algorhythm and Blues,” Fast Company, December 1,
2005; http://www.fastcompany.com/54817/algorhythm-and-blues).

20. Attempts made in this regard have been limited in scope. For instance,
the Amazon Vine Program rewards selected reviewers with free products, and
LaFourchette.com grants discounts for (verified) diners who write reviews and
make reservations via their site. See Avery, Resnick, and Zeckhauser (1999) and
Miller, Resnick, and Zeckhauser (2004), who study the design of monetary incen-
tives that encourage users to share product evaluations.
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in preferences or from infrequent user feedback, which is partic-
ularly the case with headline-curation and song-selection sites.?!

IV. OprTiMAL RECOMMENDATION PoLICY

We now characterize the first-best and second-best policies.
We first observe that in both cases, the designer should always
disclose the good news immediately; that is, y; = 1. This follows
from the fact that raising the value of y; can only increase the
value of objective W and relax equation (4) without affecting any
other constraints. We thus fix y; = 1 throughout and focus on the
designer’s optimal spam policy «.

Next, by using equation (3) and y; = 1, the incentive con-
straint (4) simplifies to:

. . (1—e)Xp® - py)
(5) oy < &(py) ;= min {1, T e pt)}
if p; < c and &(p;) := 1 if p; > c. In words, &(p;) is the maximum
spam that the designer can send, subject to the posterior q;(p;) of
the recommended agents being no less than the cost c. We thus
interpret &(p;) as the designer’s spamming capacity.

The capacity depends on the prior p°. If p° > ¢, then the agents
have myopic incentives to explore, even at the prior. From then on,
the designer can keep the agents from updating their beliefs by
simply spamming all agents, inducing full exploration at &(p;) = 1
for all p;.22 Therefore, equation (4) is never binding in this case.

By contrast, if p° < c, the constraint is binding. In this case,
it is optimal to set a; = &(p;), which keeps the posterior ¢; of
the recommended agents equal to c. More important, &(p,) < 1
in this case, so not all agents are spammed. Intuitively, if the
designer spams all agents (i.e., @ = 1), they will find the recom-
mendation completely uninformative; therefore, their posterior
equals p°. Since p° < ¢, they will never consume the product. By

21. Due to breakthrough news, the mix of news items changes rapidly, making
it difficult for users to send feedback and for the platform to adjust its selection
based on their feedback in real time. Likewise, a significant number of Pandora
users use the service while driving or working, which limits their ability to send
feedback (“thumbs up” or “thumbs down”).

22. Of course, this is possible because agents are not told whether the recom-
mendation is the result of news or simply spam. Formally, the martingale property
implies that g;(p;) = p® if @ = 1.

020z Ateniged | uo 1senb Aq £6289.1/1 /8/Z/SE | AOBNSqE-ajoiue/alb/woo dno-olwspese//:sdpy Woly papeojumoq



RECOMMENDER SYSTEMS AND SOCIAL LEARNING 885

contrast, if the designer rarely spams (i.e., @ >~ 0), then the pos-
terior of the recommended agents will be close to 1; that is, they
will be almost certain that the recommendation is genuine. Natu-
rally, there is an interior level of spam that will satisfy incentive
compatibility. The spamming capacity &(p;) is initially zero and
increases gradually over time. Immediately after the product’s re-
lease, the designer has nearly no ability to spam because good
news never arrives instantaneously and the agents’ prior is unfa-
vorable. Over time, however, &(p;) increases because even when
no news is received and p; falls as a result, the arrival of good news
becomes increasingly probable. The designer can thus build her
credibility and expand her capacity to spam as time progresses.

In essence, spamming “pools” recommendations across two
very different circumstances: when good news has arrived, on the
one hand, and when no news has arrived, on the other. Although
the agents in the latter case will never knowingly follow the rec-
ommendation, pooling the two circumstances for recommenda-
tions enables the designer to incentivize the agents to explore—
as long as the recommendation in the latter circumstance is
kept sufficiently infrequent/improbable. Because the agents do not
internalize the social benefits of exploration, spamming becomes
a useful tool for the designer’s second-best policy. We next charac-
terize the optimal recommendation policy.

PRrROPOSITION 1.
(i) The first-best policy prescribes exploration

1 if p > p%

FB/ N _
)= :0 it py < p.

where

pii=c 1_r—v1 ,
:0+7‘(U+x)

and v := % denotes the continuation payoff on the ar-
rival of good news.
(i1) The second-best policy prescribes exploration at

a(p) if pr > p%
OKSB(pt) _ D : bt =2 P
0 if p; < p*.
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o
1
first-best
policy
0 t

(iii) If p° > ¢, then the second-best policy implements the
first-best policy, and if p° < ¢, then the second-best policy
results in slower exploration/learning than the first-best
policy. Whenever p° > p*, the second-best policy induces
more exploration/learning than both no social learning
and full transparency.

The first-best and second-best policies have a cutoff struc-
ture. They induce maximal feasible exploration, which equals 1
under the first-best policy and the spamming capacity & under the
second-best policy—as long as the designer’s posterior remains
above the threshold level p*. Otherwise, no exploration is cho-
sen. The optimal policies induce interesting learning trajectories,
which are depicted in Figure I for the case of p° < c.

The optimality of the cutoff policy and the associated cutoff
can be explained by the main trade-off the designer faces for any
given belief p:

1
NI

cost of

value of exploration exploration
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To understand the trade-off, suppose that the designer induces an
additional unit of exploration at p, which entails flow costs for the
exploring agents (the second term) but yields benefits (the first
term). The benefits are explained as follows: with probability p,
the product is good, and exploration will reveal this information at
rate A, which will enable the future generation of agents to collect
the benefit of v = % This benefit is discounted by the rate ﬁ at

which the good news will be learned through background lea}ning,
even with no exploration. Note that the benefits and the costs are
the same under the first-best and second-best policies.?> Hence,
the optimal cutoff p* (which equates them) is the same.

If p° > ¢, the designer can implement the first-best policy
by simply spamming all agents as long as p; > p*. The agents
comply with the recommendation because their beliefis “frozen” at
p° > c under that policy. Admittedly, informational externalities
are not particularly severe in this case because early agents will
have an incentive to consume on their own. Note, however, that
full transparency does not implement the first-best policy in this
case, as agents will stop exploring once p; reaches c. In other
words, spamming is crucial to achieve the first-best, even in this
case.

In the more interesting case with p° < ¢, the second-best pol-
icy cannot implement the first-best policy. In this case, the spam-
ming constraint for the designer is binding. As seen in Figure I,
spamming capacity is initially zero and increases gradually. Con-
sequently, exploration starts very slowly and builds up gradually
over time until the posterior reaches the threshold p*, at which
point the designer abandons exploration. Throughout, the explo-
ration rate remains strictly below 1. In other words, learning is
always slower under the second-best policy than under the first-
best policy, even though the total exploration is the same (due to
the common threshold). Since the threshold belief is the same un-
der both regimes, the agents are encouraged to experiment longer
under the second-best regime than under the first-best regime,
as Figure I shows. In either case, as long as p° > p*, the second-
best policy implements higher exploration/learning than either no
social learning or full transparency, outperforming each of these
benchmarks.

23. In particular, the benefit of forgoing exploration, that is, relying solely
on background learning, is the same under both regimes. This feature does not
generalize to some extensions, as noted in Sections VIL.A and VILE.
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Comparative statics reveal further implications. The values of
(p°, p) parameterize the severity of the cold-start problem facing
the designer. The lower these values, the more severe the cold-
start problem. One can see how these parameters affect optimal
exploration policies and the speed of social learning.

COROLLARY 1.

(i) Asp®increases, the optimal threshold remains unchanged
in both the first-best and the second-best policies. The
learning speed remains the same in the first-best policy
but increases in the second-best policy.

(i) As p increases, the optimal threshold p* increases, and
the total exploration decreases under both the first-best
and the second-best policies. The speed of exploration re-
mains the same in the first-best policy but increases in
the second-best policy, provided that p° < ¢.2*

Unlike under the first-best policy, the severity of the cold-
start problem affects the rate of exploration under the second-
best policy. Specifically, the more severe the cold-start problem, in
the sense of (p°, p) being smaller, the more difficult it is for the
designer to credibly spam the agents, thereby reducing the rate of
exploration the designer can induce.

In our model, background learning seeds the exploration; for
example, if p = 0, the designer has no credibility, and no explo-
ration ever takes place. This observation has certain policy im-
plications. For example, Internet recommenders such as Pandora
make costly investments to raise p, which can help the social
learning in two ways. First, as shown by Corollary 1 (ii), such in-
vestments act as a substitute for agents’ exploration.?® This sub-
stitution helps lower the exploration costs of agents and speeds up
learning in the second-best regime, particularly in the early stages
when incentivizing user exploration is costly. Second, the designer
investments have an additional benefit in the second-best regime:
background learning makes spamming credible, which allows the
designer to induce a higher level of user exploration at each ¢. Im-
portantly, this effect is cumulative, or dynamically multiplying,

24. Recall that we are assuming that p > 0. If p = 0, then no exploration can
be induced when p° < c.

25. Indeed, an increase in p raises the opportunity costs of exploration, calling
for its termination at a higher threshold under both the first-best and the second-
best policies.
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The dots on the x-axis indicate stopping times under the first-best policy.

as increased exploration makes subsequent spamming more cred-
ible, which in turn enables further exploration. Figure II shows
that this indirect effect can accelerate social learning significantly:
as p rises, the time required to reach the threshold belief is re-
duced much more dramatically under the second-best policy than
under the first-best policy. We will see in Section VIL.D how this
effect causes the designer to front-load background learning when
she chooses it endogenously (at a cost).

V. PuBLIC RECOMMENDATIONS

Thus far, we have assumed that recommendations are private
and personalized, meaning that agents can be kept in the dark
about the recommendations that other users have received. Such
private/personalized recommendations are an important part of
the Internet recommender system; Netflix and Pandora make
personalized recommendations based on their users’ past viewing
and listening histories, respectively. Likewise, search engines per-
sonalize the ranking of search items based on users’ past search
behaviors. However, some platforms make their recommendations
public and thus commonly observable to all users. The case in
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point are product ratings. Ratings provided by Amazon, Yelp,
Michelin, and Parker on books, restaurants, and wines are pub-
licly observable. In this section, we study the case in which the
designer’s recommendation at each time becomes publicly observ-
able to all agents who arrive thereafter.?6

Public recommendations are clearly not as effective as pri-
vate recommendations in terms of incentivizing user exploration.
Indeed, the optimal private recommendation identified earlier is
not incentive compatible when made public. If only some frac-
tion of users are recommended to explore, the action reveals the
designer’s private information, and users will immediately rec-
ognize that the recommendation is merely spam and thus ignore
the recommendation. Hence, if the designer wishes to trigger user
exploration, she must adopt a different approach. We show that
although spam becomes less effective as an incentive when rec-
ommendations are public, it is still part of the optimal policy.

To focus on a nontrivial case, we assume p* < p° < ¢, where p*
is the threshold belief under the first-best and second-best private
recommendation policies (defined in the previous section).?” As we
show shortly, given this assumption, the designer can still induce
agents to explore through a public recommendation policy, but the
policy must be random.

To begin, observe first that if the designer receives news at
any point in time, she will thereafter recommend the product to
all agents. Plainly, the sharing of good news can only increase
agents’ welfare and relax their incentives, just as before.

26. In practice, users can access past ratings directly or indirectly through
search engines. For instance, Amazon makes all reviews visible to users; Yelp
explicitly allows users to see monthly ratings trends for each restaurant, which
often span many years. Whether users can observe past and current recommen-
dations is an important consideration for our analysis. Indeed, if only current
recommendations are observable, the designer can implement optimal private
recommendations, as described in Section IV, via public recommendations. For
instance, to spam one out of seven users, the designer can divide each interval
[¢, ¢t + dt) into seven equal-sized subintervals, pick one at random, and spam only
those users arriving in that subinterval. This policy is clearly incentive compati-
ble (an agent is unable to discern whether he is being targeted at random or good
news has arrived) and achieves virtually the same payoff as the optimal private
recommendation with an arbitrarily “fine” partitioning of time intervals.

27. If either p® > ¢ or p® < p*, the first-best policy is achievable via the public
recommendation policy. In the former case, the designer can spam fully until her
belief reaches the threshold p*; then, the agents do not update their beliefs, and
they are therefore happy to follow the designer’s recommendation. In the latter
case, the first-best policy prescribes no exploration, which is trivial to implement.
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Next, to see why the recommendation policy must be random,
suppose that the designer commits to spamming—that is, to rec-
ommend the product to users despite having received no news—at
some deterministic time ¢ for the first time. Since the recommen-
dation is public, all agents observe it. Because the probability of
the good news arriving at time ¢, conditional on not having done
so before, is negligible, the agents will put the entire probability
weight on the recommendation being merely spam and ignore it.
Hence, deterministic spam will not work. Consider the random
policy described by F(¢), the probability that the designer starts
spam by time ¢. Here, we heuristically derive F(¢), taking several
features of the optimal policy as a given. Appendix B establishes
these features carefully.

First, if the designer’s belief falls below p* at any point in time,
assuming that no news has been received by then, the designer
will stop exploration (or cease spamming). This follows from the
optimal trade-off between exploitation and exploration identified
earlier under the optimal (private) recommendation policy. Let #*
be the time at which the designer’s posterior reaches the threshold
belief p*, provided that no agents have experimented and news
has never been received.?® Clearly, if the designer does not trigger
spam by time ¢*, she will not trigger spam after that time, which
implies that the distribution F is supported at [0, ¢*]. Second, once
the optimal policy sends spam to all agents at some random time
t < t*, continuing to spam thereafter does not change the agents’
beliefs; the agents have no grounds to update their beliefs. Hence,
once they have incentives to explore, all subsequent agents will
have the same incentive. Consequently, the optimal policy will
continue recommending the product until the designer’s belief
falls to p*.

Given these features, the distribution F' must be chosen to
incentivize users to explore when they are recommended to do so
for the first time. To see how, we first obtain the agents’ belief

B pPe (p + h(t))
~ ple=*t(hp + h(t) + (1 — pO)h(t)’

qt

on being recommended to explore for the first time, where

h(t) := 1 f (ﬁfzt) is the hazard rate of starting spam. This formula is

* 0
28. More precisely, t* = —% In (ﬁ)ﬁ 1;5

), according to equation (2) with

at=0.
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explained by Bayes’s rule. The denominator accounts for the prob-
ability that the recommendation is made for the first time at ¢
either because the designer receives news at time ¢ (which oc-
curs with probability App°e %) or because the random policy F
triggers spam for the first time at ¢ without having received any
news (which occurs with probability (p%e=** + 1 — p®)h(t)). The
numerator accounts for the probability that the recommendation
is made for the first time at ¢ and that the product is good. For the
agents to have incentives to explore, the posterior ¢; must be no
less than c, a condition that yields an upper bound on the hazard
rate:

rop°(1 —¢)

hE) < (1—p%( — (1 —cle*t)— p°(1—c)

Among other things, this implies that the distribution ¥ must be
atomless. As is intuitive and formally shown in Appendix B, the
incentive constraint is binding for the optimal policy (i.e., q; = ¢),
which gives rise to a differential equation for F, alongside the
boundary condition F(0) = 0.2 Its unique solution is

Pl — )1 —e )
(1— p%e — p°(1 — c)e—*rt’

7) F@it) =

for all ¢ < ¢*. Since the designer never spams after t* (when p = p*
is reached), F(t) = F(¢*) for ¢ > t*.

Examining F reveals various features of the optimal policy.
First, as with private recommendation, the exploration under
the second-best policy is single-peaked, though in a probabilis-
tic sense. The expected exploration starts “small” (i.e., F(¢) ~ 0 for
t ~ 0) but accelerates over time as the designer’s credibility in-
creases (i.e., F(¢) is strictly increasing as ¢ increases), and it stops
altogether when p* is reached.

While spam is part of the optimal public recommendation, its
randomness makes it less effective at converting a given proba-
bility of good news into incentives for exploration, leading to a
reduced level of exploration. This reduced effectiveness can be

29. As mentioned earlier, ¢; remains frozen at ¢ from then on (until exploration
stops).
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seen as follows:
(1—-0c)p® — (1 —c)ple=* - 1-c)p’ -1 -c)p
1 —-p%c— @A —c)plet ~ (1 - pOc —(1—c)ps

_a —o)p’ —p) N
1-pOc—p)

F(t) =

where both inequalities use p° < ¢, and the first follows from p;, =
ple—Jorptandt _ p0o—int Consequently, the rate of exploration is,
on average, slower under public recommendations than under pri-
vate recommendations:

ProPOSITION 2. Under the optimal public recommendation policy,
the designer recommends the product at time ¢ if good news
is received by that time. If good news is not received and
a recommendation is not made by time ¢ < #*, the designer
triggers spam according to F(¢) in equation (7), and the spam
lasts until her belief reaches p* in the event that no good news
arrives by that time. The induced exploration under optimal
public recommendations is, on average, slower—and the level
of welfare attained is strictly lower—than that under optimal
private recommendations.

A direct computation shows that F(¢) is increasing in p° and
0, leading to the comparative statics similar to Corollary 1:

COROLLARY 2. As p° or p increases, the rate of user exploration
increases under optimal public recommendations.

As before, these comparative statics suggest the potential role
of product research by the designer.

VI. MATcHING PrODUCTS TO CONSUMERS

Categorizing products has become an important tool that on-
line recommenders use to inform users about their characteris-
tics and identify target consumers. In the past, movies and songs
were classified by only a handful of genres; now recommenders
categorize them into numerous subgenres that match consumers’
fine-grained tastes.? In this section, we show how a designer

30. Netflix has 76,897 micro-genres to classify the movies and TV shows
available in their library (see “How Netflix Reverse Engineered Hollywood,”
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can match a product to the right consumer type through user
exploration.

To this end, we modify our model to allow for horizontal pref-
erence differentiation. As before, a product is released at ¢t = 0,
and a unit mass of agents arrives at every instant ¢ > 0. However,
the agents now consist of two different preference types, type a
and type b, with masses m, and m;, respectively. We assume that
mp>my=1—mp > 031

The agent types are known to the designer from, say, their
past consumption histories. However, the product’s fit with each
type is initially unknown, and the designer’s objective is to dis-
cover the fit so that she can recommend it to the right type of agent.
Specifically, the product is of type w € {a, b}, which constitutes
the unknown state of the world. A type-w agent enjoys the payoff
of 1 from a type-w product but 0 from a type-o’ product, where w
# o' € {a, b}.32 The common prior belief is p° = Pr[w = 8] € [0, 1].
At any point, given belief p = Pr[w = b], a type-b agent’s expected
utility is p, while a type-a agent’s expected utility is 1 — p. We call
them the product’s expected fits for the two types. The opportunity
cost for both types is ¢ > 0. Therefore, each agent is willing to
consume the product if and only if its expected fit is higher than
the cost.

Through consumption, an agent learns whether the product
matches his taste; if so, he reports satisfaction at rate A = 1. As
before, the designer receives feedback in the form of conclusive
news, with arrival rates that depend on the agents’ exploration
behaviors. Specifically, if fractions («,, ap) of type-a and type-b
agents explore, then the designer learns that the product is of
type w = a, b at the Poisson rate a,m,,. (For the sake of simplicity,

The Atlantic, January 2014). For example, a drama may now be classified as a
“critically acclaimed irreverent drama” or a “cerebral fight-the-system drama,”
and a sports movie may be classified as an “emotional independent sports movie”
or a “critically acclaimed emotional underdog movie.” Likewise, Pandora classifies
a song based on 450 attributes (“music genes”), leading to an astronomical number
of subcategories.

31. If my = my, the optimal policy remains the same (as described in
Proposition 3), except that beliefs do not drift when all agents experiment.

32. The current model can be seen as a simple variation of the baseline model.
If both types value the product more highly, say, in state w = b than in state
o = a, then preferences are vertical, as in the baseline model. The key difference is
that the preferences of the two types are horizontally differentiated in the current
model.
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Rates of Exploration by Two Types of Agents under Full Transparency

we assume that there is no background learning.) Hence, if the
product type is not learned, the belief p drifts according to

p = p(1 — plagmg — apmp).

Note that the designer’s belief can drift up or down depending
on how many agents of each type are exploring. In particular, if
both types explore fully (¢, = o = 1) but no feedback occurs, the
designer’s belief that the product is of type b decreases at a rate
proportional to m;, — m,.

Under full transparency, agents will behave optimally given
the correct belief: a type-b agent (type-a agent) will consume if
andonlyifp >c(1 — p > cep <1 — ¢), as depicted in Figure III.

We next consider the first-best and second-best policies, under
the assumption that ¢ < % This latter assumption means that the
product is so popular that both types of agents are willing to con-
sume it even when uncertainty is high (denoted the “overlapped”
region in Figure III, which includes p = 1).23

As before, if the designer receives news, sharing that news is
trivially optimal. Hence, a policy is described by a pair (a4, op) of
spamming rates for the two types—the probabilities with which
alternative types are recommended to consume in the event of no
news—as a function of p.

33.Ifc > %, no learning occurs if the prior is in the range of [1 — ¢, c], as neither
type is willing to consume. For more information on the case of an unpopular
product, see the proof of Lemma D in Section C.1 of the Online Appendix, which
treats both ¢ < % and c > %
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FIGURE IV

Rates of Exploration by Two Types of Agents under the First-Best Policy

LeEMMA 1. The first-best policy is characterized by two thresholds,
pand p,with0 < p <c <1-c < p<1,suchthat

(1,0), for p < p,

W o |1 R forp=p
@ (1,1), for p e (p, pl,
(0,1), for pe(p,1].

The logic of the first-best policy follows the standard
exploration—exploitation trade-off.3* The policy calls for each type
to explore the product as long as its expected fit exceeds a thresh-
old: p for type b and 1 — p for type a. Due to the informational ex-
ternalities, these thresholds are lower than the opportunity costs.
In other words, the policy prescribes exploration for a type even
when the product’s expected fit does not justify the opportunity
cost. As seen in Figure IV (compared with Figure III), the first-best
policy results in wider exploration than full transparency.

Some features of the policy are worth explaining. The de-
signer’s belief drifts to p from either side (as depicted by the ar-
rows in Figure IV), unless conclusive news arrives. The reason is
that m; > m,, which results in a downward drift of belief when
both types of agents explore. The behavior at p = pis also of inter-
est. In this case, all type-a agents consume, but only a mass m, of

34. The current model resembles that of Klein and Rady (2011), who study two
players strategically experimenting with risky arms that are negatively correlated.
Lemma 1 is similar to their planner’s problem. The difference is that we allow for
asymmetry in the size of the two agent types in our model. Of course, the main
analyses are quite distinct: we focus on an agency problem, whereas they focus on
a two-player game.
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FIGURE V

Evolution of the Designer’s Belief, First When Only Type-a Agents Explore (Left
Panel) and Then When All Agents Do (Right Panel)

the type-b agents do, so that the belief remains constant without
any updating. However, learning does not stop. Eventually, the
product type will be revealed with probability 1.

Not surprisingly, the first-best policy may not be incentive
compatible. The second-best policy illustrates how incentive con-
siderations affect the optimal policy.

PropPosITION 3. The second-best policy is described as follows:

(i) If p° < ¢, then o8 = (¢S5, a®) = (1,0) until p; (which
drifts up) reaches c; thereafter, the first-best policy is fol-
lowed.

(ii) Ifp® > 1 — ¢, then o2 = (0, 1) until p; (which drifts down)
reaches 1 — c; thereafter, the first-best policy is followed.
(iii) If p° € [e, 1 — c], then the first-best policy is followed.

If p° € [c, 1 — c], the first-best policy is incentive compati-
ble. Since both types of agents initially have incentives to explore,
being told to explore is (weakly) good news (meaning that the
designer has not learned that the state is unfavorable). By con-
trast, if p° & [c, 1 — ¢, the first-best policy may not be incentive
compatible.

Suppose, for instance, that p° < c. In this case, type-b agents
will refuse to explore. Therefore, only type-a agents can be in-
duced to explore. We explain the second-best policy in this case
with the aid of two graphs: Figure V, which tracks evolution of
the designer’s belief, and Figure VI, which tracks the evolution of
agents’ beliefs, both assuming no breakthrough news. Since only
type-a agents explore in the initial phase (times ¢ < 1), the de-
signer’s belief will drift up as long as no news obtains, as seen in
Figure V (left panel). During this phase, type-a agents are recom-
mended the product regardless of whether the designer learns the
state is @, so the induced belief remains constant for both types.3?

Next, suppose the designer’s belief reaches p; = ¢. Thereafter,
the first-best policy becomes incentive compatible. The reason is

35. Recall that the designer can never learn that the state is b if only type-a
agents explore.
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Evolution of Agents’ Beliefs When the Designer Receives No News
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In dash-dot (red online), the type-a agent’s belief; in solid (blue online), the type-b
agent’s belief; in dash (green online), the designer’s belief.

that although the belief drifts down thereafter, as depicted in
Figure V (right panel), the designer can induce both types to be-
come optimistic about the product’s fitness for them by simply
recommending the product to them. A type-a agent becomes more
optimistic (the belief drifts down), since she knows that type-b
agents might be exploring, and were the true state known to be
b, she would be told not to consume. Hence, being told to explore
is good news. Meanwhile, a type-b agent’s optimism jumps up to
q(p;) = c at time ¢ = 2 because being told to explore is proof that the
designer has not learned that the state is a. Thereafter, a type-
b agent becomes more optimistic (her belief drifts up) because
being told to explore means that the designer has not learned
that the state is a. At some point (¢ = 5), the designer’s belief
reaches p. Because only a fraction of type-b agents get spammed,
being told to explore is another piece of good news (suggesting
that perhaps the designer has learned that the state is b). Type-b
agents’ belief jumps up and drifts up further from then on. To
foster such optimism for both types of agents, the designer simply
needs to keep the recommended agents uninformed about whether
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the recommendation is genuine or spam and about which recom-
mendation is made to the other agents.3®

The optimal policy shares some common features with that
in our baseline model. First, the second-best policy induces wider
user exploration than would be possible under full transparency.
In particular, once p; drifts below c, type b-agents will never ex-
plore under full transparency, but they will continue to explore
under the second-best policy. Second, compared with the first-best
policy, the scope of early exploration is “narrower”; the exploration
begins with the most willing agents with a high expected fit—
type-a agents in the case of p° < c—and then gradually spreads
to the agents who are initially less inclined to explore, which is a
manifestation of “starting small” in the current context.

VII. EXTENSIONS

We now extend the baseline model analyzed in Section IV to
incorporate several additional features. The detailed analysis is
provided in Section D of the Online Appendix; here, we illustrate
the main ideas and results.

VIIL.A. Vertically Heterogeneous Preferences

The preceding section considers agents whose preferences are
horizontally differentiated. Here, we consider agents whose pref-
erences are vertically differentiated. Suppose that the agents have
two possible opportunity costs: 1 > cg > ¢, > p°. (As in the base-
line model, we assume background learning at rate p > 0.) A low-
cost agent is more willing to explore the product than a high-cost
agent, so the model captures the vertical heterogeneity of prefer-
ences. As in the preceding section, we assume that the designer
observes the type of the agent from, say, his past consumption
history.?” For instance, the frequency of downloading or stream-
ing movies may indicate a user’s (opportunity) cost of exploration.

36. The divergence of the beliefs held by the two types of agents is sustained
only through private recommendations. Hence, the optimal policy cannot be im-
plemented through a public recommendation.

37. If the designer cannot infer the agents’ costs, then her ability to induce
agents to explore is severely limited. Che and Horner (2015) show that if the
agents have private information over costs drawn uniformly from [0, 1], then the
second-best policy reduces to full transparency, meaning that the designer will
never spam.
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We illustrate how the designer tailors her recommendation policy
to each type in this case.

To begin, one can extend the incentive constraint (3) to yield
the spamming capacity for each type:

6i(py) = (1 —c)(p° — p)
ST A= pO)e -

for i = L, H. In other words, each type i = H, L can be spammed

with a probability of at most &;(p;), given designer’s belief p;. Note

that é;(p;) > ag(p;), so alow-cost type can be spammed more than

a high-cost type. The optimal policies are again characterized by

cutoffs:

PROPOSITION 4. Both the first-best and the second-best policies
are characterized by a pair of thresholds 0 < p;, < py < p°,
such that each typei = L, H is asked to explore with maximal
probability (which is one under the first-best policy and é&;(p;)
under the second-best policy) if p; > p;, and zero exploration
otherwise. The belief threshold for the low type is the same
under the two regimes, but the threshold for the high type
is higher under first-best policy than under the second-best
policy.

The overall structure of the optimal policy is similar to that
of the baseline model: the policy prescribes maximal exploration
for each type until her belief reaches a threshold (which is be-
low its opportunity cost), and the maximal exploration under the
second-best policy “starts small” and accelerates over time. Con-
sequently, given a sufficiently high prior belief, both types are
initially induced to explore. The high type’s threshold is reached
first, and from then on only the low type explores. Next, the low
type’s threshold is reached, at which point all exploration stops.

The trade-off facing the designer with regard to the low type’s
marginal exploration is conceptually the same as before, which
explains why the low type’s threshold is the same under both
the first-best and the second-best policies. However, the trade-off
with regard to the high type’s marginal exploration is different.
Unlike the baseline model, stopping the high type’s exploration
does not mean stopping all users’ exploration; it means that only
the low type will explore thereafter. This has several implications.
First, the high type will explore less, making the threshold higher,
compared with the case in which only the high type can explore
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(a version of the baseline model). Second, this also explains why
the high type will explore more under the second-best policy than
under the first-best policy. The binding incentive constraint means
that the low-cost type’s exploration will be lower under the second-
best policy, so the consequence of stopping the high-cost type’s
exploration is worse under the second-best policy than under first-
best policy. Third, the high type’s exploration makes the arrival
of news more plausible, thus making the recommendation for the
low type more credible. Hence, the designer “hangs on” to the
higher-cost type longer than she does under the first-best policy.>®

VII.B. Calendar Time Uncertainty

We have thus far assumed that agents are perfectly aware of
the calendar time. As we argue, relaxing this assumption makes it
easier for the designer to spam the agents. Indeed, if they are a pri-
ori sufficiently unsure about how long exploration has been occur-
ring, the designer can achieve the first-best policy. Roughly speak-
ing, uncertainty regarding calendar time allows the designer to
further cloud the meaning of a “consume” recommendation, as she
can shuffle not only histories of a given length (some when she has
learned the state, others when she has not) but also histories of
different lengths.

A simple way to introduce calendar time uncertainty is to as-
sume that the agents do not know when they have arrived relative
to the product’s release time. In keeping with realism, we assume
that the flow of agents “dries out” after a random time 7 following
an exponential distribution with parameter & > 0.39

From the designer’s point of view, £ is an “additional” discount
factor to be added to r, their original discount rate. Hence, the first-
best policy is the same as in the baseline model, adjusting for this

38. Che and Horner (2015) show that this structure holds more generally, for
instance, when agents’ costs are continuous, as drawn from an interval.

39. An alternative modeling option would be to assume that agents hold the
improper uniform prior on the arrival time. In that case, the first-best policy is
trivially incentive compatible, as an agent assigns probability one to an arrival
after the exploration phase is over. Not only is an improper prior conceptually
unsatisfying, but it is also more realistic that a product has a finite (but uncer-
tain) “shelf life,” which is what the current assumption amounts to—namely, the
product’s shelf life expires at r. Agents do not know 7 or their own arrival time:
conditional on {tr = ¢} (which they do not know), they assign a uniform prior over
[0, ] on their arrival time.
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rate. In particular,
where v := 1=¢
=

. (r+&w
pr=c|l- |-
p+T+E0+3)
The following formalizes the intuition that, provided that the

prior belief about calendar time is sufficiently diffuse, the designer
is able to replicate the first-best policy.

PROPOSITION 5. There exists £ > 0 such that, for all £ < £, the
first-best policy is incentive compatible.

This result suggests that it is easier to incentivize users to ex-
plore a product that has a long shelf life or a priori durable appeal
than a product that does not. The intuition is as follows. An agent
will have a stronger incentive to explore when it is more likely
that she has arrived after the exploration phase is complete—
that is, after the designer’s belief will have reached p* absent any
good news—as any recommendation made in the postexploration
phase must be an unambiguously good signal about the product. A
longer shelf life & for the product means not only that both the ex-
ploration and the postexploration phases are longer but also that
the agents will put a comparatively higher probability on arriving
in the second phase.

VII.C. Naive Agents

In practice, some users are naive enough to follow the plat-
form’s recommendation without any skepticism. Our results are
shown to be robust to the presence of such naive agents, with a
new twist. Suppose that a fraction p,, € (0, 1) of the agents naively
follow the designer’s recommendation. The others are rational and
strategic, as has been assumed thus far; in particular, they know
about the presence of the naive agents and can rationally respond
to the recommendation policy with the knowledge of their arrival
time. The designer cannot tell naive agents apart from rational
agents. For simplicity, we now assume no background learning. In-
tuitively, the naive agents are similar to fans (background learn-
ing) in our baseline model, in the sense that they can be called on
to seed social learning at the start of product life. However, naive
agents are different from fans in two ways. The naive agents in-
cur positive costs ¢ > 0, so their learning is not free, which affects
the optimal recommendation policy. Second, their exploration can
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only be triggered by the designer, and the designer, due to her in-
ability to separate them, cannot selectively recommend a product
to them.40

The designer’s second-best policy has the same structure as
before: at each time ¢, absent any news, she spams a fraction «;
€ [0, 1] of randomly selected agents to explore, regardless of their
types. (She recommends to all agents on the receipt of good news.)
Due to the presence of naive agents, the designer may now spam
at a level that may fail the rational agents’ incentive constraint.
Given policy «o;, mass p,a; of naive agents will explore, and mass
(1 — pp)a; of rational agents will explore if and only if o; < &(py),
where @(p;) is defined in equation (5). Since the rational agents
may not follow the recommendation, unlike the baseline model,
the mass of agents who explore may differ from the mass of those
who receive spam. Clearly, the most the designer can induce to
explore is

é(py) := max{pn, a(p)} = pnas + (1 — pu)as - Lig,<a(p)-

ProPOSITION 6. In the presence of naive agents, the second-best
policy induces exploration at rate

¢SB(p,) = é(p) if pr > p*;
0 if p; < p*,

where p* is defined in Proposition 1—but with p = 0.

The presence of naive agents adds an interesting feature to
the optimal policy. To explain, assume that p* < p° < c. Recall that
a(py) = 0 < p, fort ~0,implying that é(p;) = p, in the early stages,
meaning that the optimal policy always begins with a “blast” of
spam to all agents; that is, o:tSB = 1. Of course, the rational agents
will ignore the spam, but the naive agents will listen and explore.
Despite their naiveté, their exploration is real, so the designer’s
credibility and her capacity &(p;) to spam the rational agents in-
crease over time. If p,, < &(p*), then a(p;) > p, for all ¢t > £, where
f €(0,t*) is such that p, = &(p;).*' This means that starting at 7,
the designer switches from blasts of spam to a more controlled
spam campaign at a; = &(p;), targeting rational agents (as well as

40. We assume that the naive agents are still sophisticated enough to mimic
what rational agents would say when the designer asks them to reveal themselves.

41. The threshold time ¢* is the same as that defined in Section IV, except that
p=0.
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naive ones). If p, > &(p*), however, the designer will keep on blast-
ing spam to all agents and thus rely solely on the naive agents for
exploration (until she reaches p*).

The blasting of spam in the early phases is reminiscent of
aggressive campaigns often observed when a new show (e.g., a
new original series) or a new platform is launched. Although such
campaigns are often ignored by sophisticated users, our analysis
shows that they can be optimal in the presence of naive users.

VII.D. Costly Product Research

For platforms such as Pandora and Netflix, product research
by the recommender constitutes an important source of back-
ground learning. Product research may be costly for a recom-
mender, but as highlighted earlier, it may contribute to social
learning. To gain more precise insights into the role played by
the recommender’s product research, we endogenize background
learning. Specifically, we revisit the baseline model, except that
now the designer chooses the background learning p; > 0 at the
flow cost of c(p;) := p? at each time ¢ > 0. While a closed-form
solution is difficult to obtain, a (numerical) solution for specific
examples provides interesting insights. (The precise formulation
and method of analysis are detailed in Section D.4 of the Online
Appendix.)

Figure VIl illustrates the product research under the second-
best policy and full transparency.

In this example, as in the baseline model, user exploration
o, follows a hump-shaped pattern; it starts small but accelerates
until it reaches a peak, after which it completely ceases. The in-
tuition for this pattern is the same as before. The interesting new
feature is the front-loading of the designer’s product research pS%.
As can be seen in Figure VII, p58 is highest at ¢ = 0 and falls grad-
ually. Eventually the product research stops, but well after user
exploration stops.*?

42. The latter feature may be surprising because our cost function satisfies
¢/(0) = 0. In this example, designer learning eventually stops because the benefit
of product research decreases exponentially as p; approaches 0. Hence, unlike in
the baseline model, learning is incomplete, despite the arbitrarily small marginal
cost at low levels of background learning. Note also that ptSB has a kink at the
time that agent exploration ceases, and it can be increasing just prior to that time,
as shown in Figure VII. Because the prospect of future learning through agents’
exploration winds down, the incentives to learn via p increase, which can more
than offset the depressing effect of increased pessimism about the state.

020z Ateniged | uo 1senb Aq £6289.1/1 /8/Z/SE | AOBNSqE-ajoiue/alb/woo dno-olwspese//:sdpy Woly papeojumoq


file:qje.oxfordjournals.org
file:qje.oxfordjournals.org

RECOMMENDER SYSTEMS AND SOCIAL LEARNING 905

T0.3

a; (right axis)

pfT (left axis) Lo

0.051 10.1

0.00+ ; . : '
0 1 2 3 4 5 6 7 8 9 t

FIGURE VII
Functions p and o (r = 0.01, A = 0.01, ¢ = 0.6, p° = 0.5)

The front-loading of p reflects three effects. First, the
marginal benefit from learning is high in the early phases
when the designer is most optimistic. Second, as noted ear-
lier, the designer’s learning and the agents’ exploration are
“substitutes” for learning, and the value of the former is par-
ticularly high in the early phases when the latter is highly
constrained. Third, background learning increases the designer’s
capacity to credibly spam the agents, and this effect is strongest
in the early phases due to its cumulative nature mentioned
earlier.

These three effects are seen more clearly via comparison
with the full-transparency benchmark, where the designer opti-
mally chooses its research (denoted in Figure VII by p/'7) against
agents choosing «; = 0, their optimal behavior under full trans-
parency. The first two effects are present in the choice of p/”.
In fact, the substitute effect is even stronger here than in the
second-best policy because agents never explore here, which ex-
plains why pf” exceeds p°Z for a wide range of t. Very early,
however, the third effect—relaxing the incentive constraint—
proves quite important for the second-best policy, which is why
p3B > pFT for a very low t. In short, the front-loading of de-
signer learning is even more pronounced in the second-best policy
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compared with the full-transparency benchmark due to the incen-
tive effect.*?

VIL.E. A More General Signal Structure

Thus far, our model has assumed a simple signal structure
that features only good news, which is a reasonable assumption
for many products whose priors are initially unfavorable but can
be improved dramatically through social learning. However, for
some other products, social learning may involve the discovery of
poor quality. Our signal structure can be extended to allow for such
a situation via “bad” news.** Specifically, news can be either good
or bad, where good news reveals w = 1 and bad news reveals w =0,
and the arrival rates of the good news and bad news are A, > 0
and A, > 0, respectively, conditional on the state. More precisely,
if a flow of mass o consumes the product over some time interval
[¢, t + dt), then during this time interval, the designer learns that
the product is “good” with probability A.(p + «)dt and “bad” with
probability A;(p + «)dt. Note that we retain the assumption that
either type of news is perfectly conclusive.

If news arrives, the designer’s posterior jumps to 1 or 0. Oth-
erwise, it follows

(8) pr=—p(1—p)dp+ay), po= po’

where § := A, — X is the relative arrival rate of good news, and
a; is the exploration rate of the agents. Intuitively, the designer
becomes pessimistic from absence of news if good news arrives
faster (§ > 0) and becomes optimistic if bad news arrives faster
(8 < 0). The former case is similar to the baseline model, so we
focus on the latter case. The formal result, the proof of which

43. To avoid clutter, we do not depict the first-best policy in Figure VII, but
its structure is quite intuitive. First, user exploration under the first-best policy
is the same as before: a full exploration until p falls to a particular threshold.
Second, the first-best product research ,otF B declines in ¢, as is the case under full
transparency, due to the designer’s declining belief. More important, ptF B is below
ptSB everywhere. The reason is twofold: (i) more user exploration occurs under the
first-best policy, which lowers optimal product research through the substitution
effect, and (ii) the incentive-promoting effect of product research is absent under
the first-best policy.

44. See Keller and Rady (2015) for the standard bad news model of strategic
exploration.
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is available in Section D.5 of the Online Appendix (which also
includes the general good news case), is as follows:

ProPOSITION 7. Consider the bad news environment (§ < 0). The
first-best policy (absent any news) prescribes no exploration
until the posterior p rises to pf® and then full exploration at
a rate of «B(p) = 1 thereafter, for p > p/'Z, where

rv
piBi=c 1-———5)-
p+rv+ ;)

The second-best policy implements the first-best policy if
po = corif py < po for some py < pr. If po € (po, ¢), then the
second-best policy prescribes no exploration until the pos-
terior p rises to p; and then exploration at the maximum
incentive-compatible level thereafter for any p > p;,* where
i > pf B In other words, the second-best policy triggers ex-
ploration at a later date and at a lower rate than the first-best

policy.

Although the structure of the optimal recommendation policy
is similar to that in the baseline model, the intertemporal tra-
jectory of exploration is quite different. Figure VIII depicts an
example with § < 0 and a sufficiently low prior belief. Initially, the
designer finds the prior to be too low to trigger a recommendation,
and she never spams as a result. However, as time progresses
without receiving any news (good or bad), her belief improves
gradually, and as her posterior reaches the optimal threshold, she
begins spamming at the maximal capacity allowed by incentive
compatibility. One difference here is that the optimal second-best
threshold differs from that of the first-best threshold. The designer
has a higher threshold, meaning that she waits longer to trigger
exploration under the second-best policy than she would under the
first-best policy. This is due to the difference in the trade-offs at
the margin between the two regimes. Although the benefit of not
triggering exploration is the same in the two regimes, the benefit

45, The mgximal incentive-compatible level is

_8
pa=p0\ 4
(1-pp)p°

a :=min {1,
(p) [
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of triggering exploration is lower in the second-best regime due to
the constrained exploration that follows in that regime.

VIII. RELATED LITERATURE

Our article relates to several strands of the literature. First,
our model can be viewed as introducing an optimal design into
the standard model of social learning. In standard models (for
instance, Bikhchandani, Hirshleifer, and Welch 1992; Banerjee
1993; Smith and Sgrensen 2000), a series of agents take actions
myopically, ignoring their effects on the learning and welfare of
agents in the future. Smith, Sgrensen, and Tian (2016) study
altruistic agents who distort their actions to improve observa-
tional learning for posterity.*® In an observational learning model
such as that of Smith, Sgrensen, and Tian (2016), agents are en-
dowed with private signals, and the main issue is whether their
actions communicate the private signals to subsequent agents. By

46. In section 4.B of their article, they show how transfers can implement the
optimal policy that they derive in the case of altruistic agents.
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contrast, in our model, agents do not have private information ex
ante and must be incentivized to acquire it.

Whether they want to communicate such information (by pro-
viding feedback or taking an action that signals it) is an important
issue, which we do not address. Instead, we simply posit a stochas-
tic feedback (Poisson) technology. Frick and Ishii (2014) examine
how social learning affects the adoption of innovations of uncer-
tain quality and explain the shape of commonly observed adoption
curves. In these papers, the information structure—what agents
know about the past—is fixed exogenously. Our focus is precisely
the optimal design of the information flow to the agent. Such dy-
namic control of information is present in Gershkov and Szentes
(2009), but that paper considers a very different environment, as
direct payoff externalities (voting) exist.

Much more closely related to the present article is a recent
article by Kremer, Mansour, and Perry (2014). They study the op-
timal mechanism that induces agents to explore two products of
unknown qualities. As in this article, the designer can incentivize
agents to explore by manipulating their beliefs, and her ability to
do so increases over time. While these themes are similar, there
are differences. In their model, the uncertainty regarding the un-
known state is rich (the quality of the product is drawn from some
interval), but user feedback is instantaneous (trying the product
once reveals its quality). In the current article, the state is bi-
nary, but the user feedback is gradual. This distinction matters
for welfare and exploration dynamics. Here, the incentive problem
entails a real-time delay and a nonvanishing welfare loss; in their
setup, the loss disappears in the limit, as either the time interval
shrinks or its horizon increases. The exploration dynamics also
differ: our optimal policy induces a “hump”-shaped exploration
that depends on the designer’s belief, whereas their exploration
dynamics—namely, how long it takes for a once-and-for-all ex-
ploration to occur—maps to the realized value of the dominant
product observed in the first period. In addition, we explore ex-
tensions that have no counterpart in their model, including public
recommendations and product categorization. We ultimately view
the two papers as complementary.

Our model builds on the Poisson bandit process for the recom-
mender’s signal, introduced in a strategic setting by Keller, Rady,
and Cripps (2005) and applied by several authors in principal-
agent setups (see, for instance, Klein and Rady; Horner and
Samuelson 2013; Halac, Kartik, and Liu 2016). As in these
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articles, the Poisson bandit structure provides a tractable tool
for studying dynamic incentives. The main distinguishing feature
of the current model is that the disclosure policy of the principal
(recommender) and the resulting control of agents’ beliefs serve
as the main tool to control the agents’ behavior.

Our article also contributes to the literature on Bayesian per-
suasion that studies how a principal can credibly manipulate
agents’ beliefs to influence their behaviors. Aumann, Maschler,
and Stearns (1995) analyze this question in repeated games with
incomplete information, whereas Ostrovsky and Schwarz (2010),
Rayo and Segal (2010), and Kamenica and Gentzkow (2011) study
the problem in a variety of organizational settings. The current
article pursues a similar question in a dynamic setting. In this re-
gard, the current article joins a burgeoning literature that studies
Bayesian persuasion in dynamic settings (see Renault, Solan, and
Vieille 2014; Ely, Frankel, and Kamenica 2017; Halac, Kartik, and
Liu 2015; Ely 2017). The focus on social learning distinguishes our
article from these other papers.*’

Finally, the present article is related to the empirical liter-
ature on user-generated reviews (Jindal and Liu 2008; Mayzlin,
Dover, and Chevalier 2014; Luca and Zervas 2016).*® These pub-
lications suggest ways of empirically identifying manipulations
in the reviews made by the users of Internet platforms such as
Amazon, Yelp, and TripAdvisor. Our article contributes a norma-
tive perspective on the extent to which the manipulation should
be controlled.

IX. CONCLUSION

Early exploration is crucial for users to discover and adopt po-
tentially valuable products on a large scale. This article has shown
how a recommendation policy can be designed to promote such
early exploration. The current study offers several takeaways.

47. Papanastasiou, Bimpikis, and Savva (2017) show that the insights of the
current article extend to the two-product context, although without fully charac-
terizing the optimal mechanism. Mansour, Slivkins, and Syrgkanis (2015) develop
an incentive-compatible disclosure algorithm that is near optimal regardless of
the prior in a multi-armed bandit setting, while Mansour et al. (2016) allow for
interactions among the agents. Avery, Resnick, and Zeckhauser (1999) and Miller,
Resnick, and Zeckhauser (2004) study monetary incentives to prompt the sharing
of product information.

48. Dai et al. (2014) offer a structural approach to aggregate consumer ratings
and apply it to restaurant reviews from Yelp.
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First, a key aspect of a user’s incentives to explore is his
beliefs about a product, which the designer can control by “pooling”
a genuine positive signal regarding the product with spam—a
recommendation without any such signal. Spamming can turn
users’ beliefs favorably toward the product and thus incentivize
exploration by early users. Consequently, spamming is part of an
optimal recommendation policy.

Second, spamming is effective only when it is properly un-
derpinned by genuine learning. Excessive spam campaigns can
backfire and harm the recommender’s credibility. We have shown
how a recommender can build her credibility by “starting small”
in terms of the amount (in the case of private recommendations),
the probability (in the case of public recommendations) and the
breadth (in the case of heterogeneous tastes) of spam, depending
on the context. We have also highlighted the role of the recom-
mender’s independent product research, such as that performed
by Netflix and Pandora. Recommender-initiated research can not
only act as a substitute for costly learning by users but also sub-
stantially increase the credibility with which the recommender
can persuade agents to explore. These benefits are particularly
important in the early phases of the product cycle when user
exploration is weakest, causing the designer to front-load her in-
vestment.

As noted earlier, this article yields implications for several
aspects of online platforms. Aside from online platforms, a po-
tentially promising avenue of application is the adaptive clinical
trial (ACT) of medical drugs and procedures. Unlike the tradi-
tional design, which fixes the characteristics of the trial over its
entire duration, the ACT modifies the course of the trial based
on the accumulating results of the trial, typically by adjusting
the doses of a medicine, dropping patients from an unsuccessful
treatment arm and adding patients to a successful arm (see Berry
2011; Chow and Cheng 2008). ACTs improve efficiency by reduc-
ing the number of participants assigned to an inferior treatment
arm and/or the duration of their assignment to such an arm.*®
An important aspect of the ACT design is the incentives for the
patients and doctors to participate in and stay on the trial. To
this end, managing their beliefs, which can be affected when the

49. The degree of adjustment is limited to a level that does not compromise
the randomized control needed for statistical power. Some benefits of ACTs are
demonstrated in Trippa et al. (2012).
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prescribed treatment changes over the course of the trial, is cru-
cial. Note that the suppression of information, especially with
regard to alternative treatment arms, is within the ethical bound-
ary of the clinical trial and is a key instrument for preserving
patient participation and the integrity of the experiment.’° The
insight from this study can provide some useful guidance for fu-
ture research on this aspect of ACT design.

While this article provides some answers on how user explo-
ration can be improved via recommendations, it raises another
intriguing question: how does recommendation-induced user ex-
ploration influence the learning of user preferences? For instance,
in the ACT context, the endogenous assignment of patients to
alternative treatment arms may compromise the purity of a ran-
domized trial and make the treatment effect difficult to identify.
A similar concern arises with the dynamic adjustment of explo-
rations conducted by online platforms, as they may make it harder
to assess the effect of user exploration. A precise understanding of
the tradeoff between improved user exploration and the observa-
tion of user preferences requires a careful embedding of current
insight within the richer framework Internet platforms employ
to understand user preferences. We leave this question for future
research.

APPENDIX A: PROOF OF PROPOSITION 1

Proof. It is convenient to work with the odds ratio, ¢ := ﬁ, and
with the cost ratio, k£ := %. Using ¢, and substituting for g using
equation (3), we can write the second-best program as follows:

[SBI sup / et (60 —t—ar (b — et)) ds,
o Jt=0
subject to
9 b = —A(p + o)l V¢, and Lo = €°,
(10) 0 <o <ally), Vt,

50. For instance, keeping the type of arm to which a patient is assigned—
whether a control arm (e.g., placebo) or a new treatment—hidden from the patient
and their doctor is an accepted practice.
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where (0 := 1{’20 and a(¢;) := &(ﬁ). Obviously, the first-best pro-
gram, labeled [FB], is the same as [SB], except that the upper
bound for a(¢;) is replaced by 1.

To analyze this trade-off precisely, we reformulate the de-
signer’s problem to conform with the standard optimal control
framework. First, we switch the roles of the variables so that we
treat ¢ as a “time” variable and ¢(¢) := inf{¢ | ¢; < £} as the state
variable, which is interpreted as the time required for a posterior ¢
to be reached. Up to constant (additive and multiplicative) terms,
the designer’s problem is written as follows:

For problem i = SB, FB,

e 1-541
Sup/ e_rt(z><1_’f_p( ¢)+ )de
0

a(t) 14 o+ all)

s.t. t(£%) =0,

1

"0 =~ rait

a(l) e A0),

where ASB(¢) := [0, @(¢)], and AFB := [0, 1].

This transformation enables us to focus on the optimal rec-
ommendation policy as a function of the posterior £. Given the
transformation, the admissible set no longer depends on the state
variable (since £ is no longer a state variable), thus conforming to
the standard specification of the optimal control problem.

Next we focus on u(¢) := m as the control variable. With
this change of variable, the designer’s problem (both second-best
and first-best) is restated, up to constant (additive and multiplica-
tive) terms.

Fori =SB, FB,
e k k
(11) sup/ e THO (1 - — (,0 (1 — —) + 1> u(Z)) de,
we) Jo £ ¢
s.t. t(£%) =0,
oy ul)
v =— VR

u(e) e U (o),
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where the admissible set for the control is U55(¢) := [ 1, 31 for

the second-best problem; and U/FB(¢) := [p = 11 With this trans-
formation, the problem becomes a standard hnear optimal control
problem (with state ¢ and control «). A solution exists via the
Filippov-Cesari theorem (Cesari 1983).

We thus focus on the necessary condition for optimality to
characterize the optimal recommendation policy. To this end, we
write the Hamiltonian:

k k [/
HE, u, 0, v) =e O (1 - (,0 (1 - Z) + 1) u(K)) - u%)

(12)

The necessary optimality conditions are that there exist an ab-
solutely continuous function v: [0, £°] such that, for all ¢, either

(13) d(0) = re g <,0 <1 - %) + 1) +u(0) =

or else u(¢) = if p(£) > 0 and u(¢) = = if o) < 0.

p+a(é)
Furthermore,
0 b4
(14) v — — Ht, u, L, v)

at
=re "V ((1 - Ig) (1 — pul0)) — u(ﬂ)) (£ —ae.).

Finally, transversality at £ = 0 implies that v(0) = 0 (since #(¢) is
free).
Note that

¢'(0) = —rt'(L)re Vg <P (1 - %) + 1)
—rt(0)
+)Le7rt(5) <,0 <1 _ %) + 1) + pk)\eT +v'(¢),

or using the formulas for ¢ and v/,

—rt(e)
r&—k)+ prlk+Ar(p(l—Fk)+ 1)),

(15) ¢') =
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Therefore, ¢ cannot be identically 0 over some interval, as there
is at most one value of ¢ for which ¢'(¢) = 0. Every solution must
be “bang-bang.” Specifically,

¢'(€)§0©e§g:=<1_ )L(l—l-p)) .

r+xl+p)

In addition, ¢(0) = —ie "““pk < 0. Therefore, $(¢) < 0 for all
0 < ¢ < ¢* for some threshold ¢* > 0, and ¢(¢) > 0 for £ > ¢*. The
constraint u(¢) € U*(£) must bind for all £ € [0, £*) (a.e.), and every
optimal policy must switch from u®) = 1 for ¢ < £* to + —Tap in the
second-best problem and to 5 in the ﬁrst best problem for ¢ > ¢*.

It remains to determine the sw1tch1ng point £* (and establishing
uniqueness in the process).
For ¢ < ¢*,

1
V() = —=e 0 H )= ——,

p prL
so that

1 r
t0)=Co— —1Int, or e =07,
PA

for some constants Cq, Cy = —} InC;. Note that C; > 0; or else,
C1 =0 and #(¢) = oo for every £ € (0, £*), which is inconsistent with
t(£*) < oo. Hence,
V() = —Lcren,
0
and so (using v(0) = 0),

v(l) = — Ciertt

r4 pi

for ¢ < ¢*. We now substitute v into ¢ for £ < £* to obtain

o k o
o) =1C1Lw ¢ <p <1 Z) + 1) - p)\Clﬂ .

We now see that the switching point is uniquely determined by
¢(£) = 0, as ¢ is continuous and C; cancels. Rearranging terms,
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we obtain

A
1+ )
£* r—+ pi

which leads to the formula for p* in the proposition (via ¢ = £
and k£ = ;=). We have identified the unique solution to the pro-
gram for both first-best and second-best problems and have shown
that the optimal threshold p* applies to both problems.

The second-best policy implements the first-best policy if
p° > ¢, since a(¢) = 1 for all £ < ¢° in this case. If p° < ¢, a(¢) < 1
for a positive measure of ¢ < ¢°. Hence, the second-best policy
implements a lower and thus slower exploration than does the
first-best policy.

As for sufficiency, we use the Arrow sufficiency theorem
(Seierstad and Sydsaeter 1987, Theorem 5, p. 107). This amounts
to showing that the maximized Hamiltonian HE, €, v(0)) =
max,cyi) H(E, u, £, v(¢)) is concave in ¢ (the state variable) for
all ¢. To this end, it suffices to show that the terms inside the large
parentheses in equation (12) are negative for all u € I/}, i = FB,
SB. This is indeed the case:

1_%_(P<1—I§>+1>u(€)
r-toma (o (-8)) 5 (003

——min{L 1} <0
B 1+p) p '

where the inequality follows from the linearity of the expression
in u(¢) and the fact that u(¢) e Ui C [ﬁ, %] for i = FB, SB. The
concavity of the maximized Hamiltonian in ¢ therefore follows. We

thus conclude that the candidate solution is indeed optimal. O

APPENDIX B: PROOF OF PROPOSITION 2

Proof. Write h" for the public history up to time ¢ and A, for
the private history of the designer—which includes whether she
received positive feedback by time ¢. Let p(h;) denote the designer’s
belief given her private history.
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e Suppose that, given some arbitrary public history A”, the
agent is willing to consume at ¢. Then he is willing to con-
sume if nothing more is said thereafter. In other words, the
designer can receive her incentive-unconstrained first-best
after such a history. Since this is an upper bound of her
payoff, we might assume that she implements it.

It follows that the only nontrivial public histories are those
in which the agents are not yet willing to buy. Given h,,
the designer chooses (possibly randomly) a stopping time
7, which is the time at which she first tells the agent to
consume (she then receives her first-best). Let F(r) denote
the distribution that she uses to tell them to consume at
time 7, conditional on her not having had good news by
time t; let F;(r) denote the distribution that she uses if she
had positive news precisely at time ¢ < t. We will assume
for now that the designer emits a single “no consume” rec-
ommendation at any given time; we will explain why this
is without loss as we proceed.

Note that as usual, once the designer’s belief p(h;) drops
below p*, she might as well resort to “truth telling,” that
is, telling the agents to abstain from buying unless she
has received conclusive news. This policy is credible, as the
agent’s belief is always weakly above the belief of the de-
signer who has not received positive news, conditional on
hP. Again, it gives the designer her first-best payoff; there-
fore, given that this is an upper bound, it is the solution.
It immediately follows that F(¢*) > 0, where #* is the time
required for the designer’s belief to reach p* absent positive
news, given that u; = p until then. If indeed F(¢) = 1 for
some ¢ < t*, then the agent will not consume when told to
do so at some time ¢ < max {t: ¢ € supp(F)}. (His belief
will have to be no more than his prior for some time be-
low this maximum, which will violate ¢ > p°.) Note that
F;(t*) = 1 for all ¢ < #*: on reaching time #*, the designer’s
belief will make truth-telling optimal, so there is no benefit
from delaying good news if it has occurred. Hence, at any
time ¢ > t*, conditional on a “no consume” recommendation
(so far), it is common knowledge that the designer has not
received good news.

The final observation: whenever agents are told to con-
sume, their incentive constraint must be binding (unless
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it is common knowledge that exploration has stopped and
the designer has learned that the state is good). If this is
not the case for some time ¢, then the designer can increase
F(¢) (the probability with which she recommends “consume”
at that time, conditional on her not having received good
news yet) and raise her payoff, while keeping the hazard
rate i (gi;),) fixed at later points in time, which will leave
future incentives unchanged.

Let
T t
H(z) :=/ / rpe 51 — F(s)) dsF,(dt).
0 0

This (nondecreasing) function represents the probability that the
agent is told to consume for the first time at some time ¢ < 7,
given that the designer has learned that the state is good at some
earlier date s < £. Note that H is constant on v > t* and that its
support is the same as that of F. Because H(0) = 0, F(0) = 0 as
well.

Let P(t) denote the agent’s belief, conditional on the (w.l.0.g.,
unique) history A7, such that he is told to consume at time ¢ for
the first time. For any time ¢ in the support of F,, we have

p° (H(t) + e " F(dt)

PO = @) 1 e F@n) + (1= pOF@”

Indifference implies that

P(t) =c,or L(t) =k,

where L(¢) is the likelihood ratio

H(dt) +e P F(dt)

_ 90
L) =¢ Faeh)
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Combining these facts, we have, for any ¢ in the support of F,

(16) (;0 - e"’”) F(dt) = H(dt).”!

This also holds for any ¢ € [0, #*], as both sides are zero if ¢ is
not in the support of F. Integrating H by parts yields

H(r) = /T rpe (1 — F(#)Fy(t)dt.
0

Integration by parts also yields

T P £
/0 (z‘o e M) F(ds) = (e_o e )F(r)— fo Ape HF(H)dt.

Hence, given that H(0) = F(0) = 0, we can rewrite the incentive
compatibility constraint for all ¢ < ¢* as:

(;0 - e"“) F(r) = /I rpe (1 — Ft)Fy(r) + F(t)) de.
0

Note that this implies, given that F,(t) < 1 for all ¢, t > ¢, that

<£ - e"“) F(r) < f Ape it =1 —e M7,
0

ZO
so that
1-— —Apt
am F) < ——\
7%~ e—p)\t

an upper bound that is achieved for all ¢ < #* if and only if F;(¢#) = 1
for all ¢ < ¢*.

51. If multiple histories of “no consume” recommendations were considered,
a similar equation would hold after any history A for which “consume” is recom-
mended for the first time at ¢, replacing F(dt) and H(d¢) with F(hF) and H(h}),
respectively; F‘(hfD ) is then the probability that such a history is observed with-
out the designer having received good news yet, while H (h,fD ) is the probability
that such a history has been observed after the designer has received good news
by then. We then define F, H : R; — R as (given ¢) the expectation F(¢) (resp.
H()) over all public histories A/, for which ¢ is the first time at which “consume”
is recommended. Taking expectations over histories hf gives equation (15). The
remainder of the proof is unchanged.
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Before writing the designer’s objective, let us work out some
of the relevant continuation payoff terms. First, ¢* is given by our

familiar threshold, which is defined by the belief ¢, = k&%?

given that exploration occurs at rate p until #*, conditional on a
“no consume” recommendation, we have e " = ‘&

From time #* onward, if the designer has not recommended to
consume, good news has not arrived. Exploration only occurs at
rate p from that point on. This history contributes to the expected
total payoff by

Ao 1—c

0 1Y), —(r+10)t*
1-F@ P
P e r+ix r

Indeed, this payoff is discounted by the factor e "*". It is positive
only if the state is good, and the history is reached with probability
p’(1 — F(t*))e***": the probability that the state is good, that the
designer has not received any good news, and that she has not
yet spammed. Finally, conditional on that event, the continuation
payoff is equal to

l-¢c A 1-c
r r+ip r

00
/ )Lpefrsfkpsds .
0

Next, let us consider the continuation payoffif the designer spams
at time 7 < #*. As previously mentioned, she will then experiment
at a maximum rate until her belief drops below p*. The stopping
time 7 + ¢ that she chooses must maximize her expected continu-
ation payoff from time t onward, given her belief p,, that is,

r 1-c
_ 1— —(M(L4p)4rt
W(r) mtax{pr< Ap+re "

—(1-p) - e*”)‘i} .
r

The second term is the cost incurred on agents during time
[z, T + t] when the state is bad. The first is the sum of three
terms, all conditional on the state being good: (i) (1 —e”ﬁ%,
the agents’ flow benefit from exploration during [z, T + ¢]; (ii)
(1 —e*+Phe=rt1t "the benefit after good news has arrived by

time 7 + t; and (iii) e*(rJr“l*p))tri—ip%, the benefit from back-

ground learning after time t + ¢ when no good news has arrived by
that time. Taking first-order conditions, this function is uniquely
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maximized by

TR A )

M1+ p) "\ ro+r1

Note that we can write W(z) = p, Wi(z) — (1 — p.)Wy(z), where
Wi(r) (Wy(r)) is the benefit (resp., cost) from the optimal choice of
t given that the state is good (resp., bad). Plugging in the optimal
value of ¢ gives

rWi(o) ro (AL p) 4\
wi(t) := =1- a2 ’
1-c rM+r\k o Ap+r
and
) rWo() _,  (LAd+p)+r ~Ti
T) i\==m — = — —_— i
o k. lo+r

Note that given no good news by time ¢, we have ¢, = % . It
follows that

k(1 — wo(£) — €% *"'(1 — w1(2))

_k<1_ r )(k ro 41 )H
B AM1+p)+7r )\l a1+ p)+r

(18) = Ke',

with

A1+ p) (k A0+ T )‘Hﬂ)
M1+ p)+r \OrQ+p)+r '

For future reference, we can use the definition of ¢;- to write
(19) .
Kot — 1 A1+ p) (i Ap 41 ><1)_ A1+ p)
ML p) 4+ \ e AA+ p) 1 A+ p) 41
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We can finally write the objective. The designer chooses {F, (F; )t* —o!
to maximize

t* _
J=p / et (¥H(dt> +e—WW1(t)F(dt)>
0

»w o 1l—c
r+io r

o
—(1- pO)/ e—rtWO(t)F(dt) +p0(1 _ F(t*))e—(r-&-)»/))t*
0

The first two terms are the payoffs in case a “consume” recom-
mendation is made over the interval [0, ¢*] and is split according
to whether the state is good or bad; the third term is the benefit
accruing if no consume recommendation is made by time ¢*.

Multiplying by le_r—:;), the objective is rewritten as:

.
/ e Tt (EOH(dt) + %Py (D F(dE) — kwo(t)F(dt))
0

Ap

+ 001 — F@"))e .
r+Ap

We can use equation (16) (as well as ¢%e " = (,. = kx(fi:)rﬂ) to
rewrite this equation as

.
/ e (R = wol®) — % (1~ wi(0)) F(de)
0

Apk

+ @1 - F(t*))m

Using equation (18) and ignoring the constant term (irrel-

evant for the maximization) gives

)L(1+p)+

Aok

A1+ p) el

t* )
'K / e T F(dE) —
0

Integrating this objective by parts and using F(0) = 0 and equation
(19), we obtain

.~ K ft* e ds (k Mitp) o )Ft*
¢ 1+pJo ¢ (B)dt + ML+p)+r Al4+p)+r @.
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Using equation (19) once more to eliminate K, we finally obtain

Ak ‘ — 15 =)
_— Tt F)dt + F(t) ).
k(1+p)+r</0 re (e)dt + B )>

Note that this objective function is increasing point-wise in F(¢)
for each ¢ < t*. Hence, it is optimal to set F' as given by its upper
bound provided by equation (17), for all ¢ < ¢*,

60(1 _ ef)»pt)

PO = e

and for all ¢ < ¢*, Fy(¢) = 1.

To prove the last statement (on the average speed of explo-
ration), fix any ¢ < ¢*. Under optimal public recommendations,
spam is triggered at s according to F(s) and lasts until ¢, unless
the posterior reaches p*. Let T(s) be the time at which the latter
event occurs if spam is triggered at s. Then, the expected level of
exploration performed by time ¢ under public recommendations is
as follows:

t t t
/ (min{t. T(s)) — $)AF(s) < / (t — $)dF(s) = f F(s)ds
0 0 0

t KO _ gOe—Aps /t 60 _ Es
—aAs <
0 k—ﬁoe—’\/’s 0 k—gs

¢
ds:/ a(ly)ds,
0

where ¢; is the likelihood ratio at time s under the optimal private
recommendation. The first equality follows from integration by
parts, and the inequality holds because ¢; = 0 * /o @) +0)ds"
0=, O
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SUPPLEMENTARY MATERIAL

An Online Appendix for this article can be found at The Quar-
terly Journal of Economics online.
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