Introduction to SFC Dynamic Models

Lecture B A Toy Model with State Money and Bills

Marco Veronese Passarella

Department of Industrial and Information Engineering and Economics University of L'Aquila – Italy
Leeds University Business School
University of Leeds – UK

Download lectures' material from:

https://github.com/marcoverpas/Six lectures on sfc models

Schedule

- A. Foundations of SFC Models for Economic Research
- **B.** A Toy Model with State Money and Bills
 - 1. Introduction
 - 2. Model Accounting
 - 3. Simulations
 - 4. Modelling PC in R
- C. A Toy Model with Bank Money and Fixed Capital
- D. Multi-Country SFC Models
- E. Ecological and Input-Output SFC Models
- F. Empirical SFC Models (using *Bimets*)

1 Introduction

Modelling net financial assets

- SFC models are not just stock-flow consistent. They are stock-flow relevant, meaning that they allow the consideration of a variety of both real and financial assets and liabilities.
- Cash, reserves, deposits, corporate loans, personal loans, advances, shares (equity), bills, bonds, fixed capital, and dwellings are included in the most advanced models.
- The simplest models only include cash, deposits, loans, and/or bills.
- Here, we present and discuss two toy models:
 - Model PC, which only considers cash (state money) and government bills
 - Model BMW, which only includes deposits (bank money) and loans, in addition to fixed capital
- While these models are highly abstract and simplified, the underlying logic is the same as that characterising more advanced models.

Box 1 Steps for developing a SFC model

- 1. Identify sectors to be modelled (households, firms, etc.)
- 2. Create balance-sheet (BS) of the economy
- 3. Create transactions-flow matrix (TFM)
- 4. Write down identities from the TFM:
 - i. Use columns to derive budget constraints
 - ii. Use also rows with multiple entries
 - iii. Identify buffer variables
- 5. Define behavioural equations and equilibrium conditions

2 Model Accounting

Assumptions

This is a model developed in chapter 4 of <u>Godley and Lavoie (2007)</u>. PC stands for portfolio choice, because households can hold their wealth in terms of cash and/or government bills.

Key assumptions are as follows:

- Closed economy
- Four agents: households, "firms", government, central bank
- Two financial assets: government bills and outside money (cash)
- No investment (accumulation) and no inventories
- Fixed prices and zero net profits
- No banks, no inside money (bank deposits)
- No ecosystem

Balance-sheet

	Households	Firms (production)	Central Bank	Government	Σ
Money (cash)	$+H_h$ Equation	(6)	$-H_{s}$	Equation (10)	0
Bills	$+B_h$		$+B_{cb}$	$-B_{S}$	0
Balance (net worth)	$-V_h$			$+V_g$	0
Σ	0	0	0	0	0

Notes: A '+' before a magnitude denotes an asset; a '-' denotes a liability.

Transactions-flow matrix

	Households	Firms (production)	Banks	Central Bank	Government	Σ
Consumption	- С	+C				0
Gov. spending		+G			-G	0
Income=GDP	+Y	<i>-Y</i>	quation (1)			0
Interest payments	$+r_{-1}\cdot B_{h,-1}$			$+r_{-1}\cdot B_{cb,-1}$	$-r_{-1}\cdot B_{s,-1}$	0
CB profits				$-r_{-1} \cdot B_{cb,-1}$	$+r_{-1}\cdot B_{cb,-1}$	0
Taxes	-T				+T	0
Δ in cash	$-\Delta H_h$			$+\Delta H_S$		0
Δ in bills	$-\Delta B_h$			$-\Delta B_{cb}$	$+\Delta B_{S}$	0
Σ	0	0	0	0	0	0

Notes: A '+' before a magnitude denotes a receipt or a source of funds; a '-' denotes a payment or a use of funds

Memo: Tobin's portfolio equations

- One of the key behavioural assumptions is that households make a two stage decision:
 - i. they decide how much they consume/save out of their income
 - ii. they decide how to allocate their wealth
- Let us consider 3 different financial assets (A, B and H). Following Brainard and Tobin (1968) and Tobin (1969), portfolio equations are:

$$\frac{A_h}{V_h} = \lambda_{10} + \lambda_{11} \cdot r_A - \lambda_{12} \cdot r_B - \lambda_{13} \cdot r_H - \lambda_{14} \cdot \left(\frac{YD}{V_h}\right) \tag{1}$$

$$\frac{B_h}{V_h} = \lambda_{20} - \lambda_{21} \cdot r_A + \lambda_{22} \cdot r_B - \lambda_{23} \cdot r_H - \lambda_{24} \cdot \left(\frac{YD}{V_h}\right) \tag{2}$$

$$\frac{H_h}{V_h} = \lambda_{30} - \lambda_{31} \cdot r_B - \lambda_{32} \cdot r_B + \lambda_{33} \cdot r_H + \lambda_{34} \cdot \left(\frac{YD}{V_h}\right) \qquad r_H = 0 \text{ and } \lambda_{34} > 0$$
 (3)

Memo: Portfolio vertical constraints

- Vertical constraint 1: $\lambda_{10} + \lambda_{20} + \lambda_{30} = 1$, as (the exogenous components of) the total shares of each assets must sum to unity
- Vertical constraint 2: $\lambda_{11} + \lambda_{21} + \lambda_{31} = 0$ $\lambda_{12} + \lambda_{22} + \lambda_{32} = 0$ $\lambda_{13} + \lambda_{23} + \lambda_{33} = 0$ $\lambda_{14} + \lambda_{24} + \lambda_{34} = 0$

The vertical sum of the coefficients in the rates of return matrix must be zero.

Memo: Other portfolio constraints

The horizontal sum of the coefficients in the rates of return matrix must be zero:

$$\lambda_{11} = -(\lambda_{12} + \lambda_{13})$$

$$\lambda_{22} = -(\lambda_{21} + \lambda_{23})$$

$$\lambda_{33} = -(\lambda_{31} + \lambda_{33})$$

The effect of demand on each asset of an increase in its own rate of interest should match that of a fall in all the other rates (ceteris paribus).

One can also add a simmetry condition:

$$\lambda_{12} = \lambda_{21}$$

$$\lambda_{13} = \lambda_{31}$$

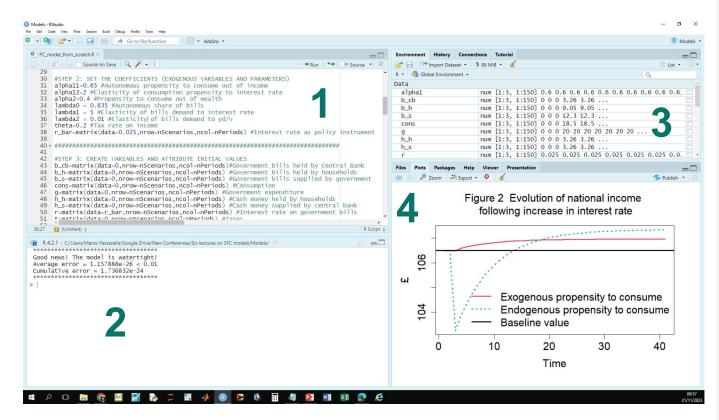
$$\lambda_{23} = \lambda_{32}$$

An increase in the return rate on A generates a drop in B that is of the same size as the drop in A generated by an identical increase in the return rate of B, etc.

Equations

National income:	Y = C + G	(1)
Disposable income:	$YD = Y - T + r_{-1} \cdot B_{h,-1}$	(2)
Tax revenue:	$T = \theta \cdot (Y + r_{-1} \cdot B_{h,-1})$	(3)
Household wealth:	$V_h = V_{h,-1} + YD - C$	(4)
Consumption:	$C = \alpha_1 \cdot YD + \alpha_2 \cdot V_{-1}$	(5)
Cash held by households:	$H_h = V_h - B_h$	(6)
Bills held by households:	$B_h = \lambda_0 \cdot V_h + \lambda_1 \cdot V_h \cdot r - \lambda_2 \cdot YD$	(7)
Supply of bills:	$B_s = B_{s,-1} + G - T + r_{-1} \cdot (B_{s,-1} - B_{cb,-1})$	(8)
Supply of cash:	$H_{s} = H_{s,-1} + \Delta B_{cb}$	(9)
Bills held by the central bank:	$B_{cb} = B_{s} - B_{h}$	(10)
Interest rate:	$r=ar{r}$	(11)
Redundant equation:	$H_h = H_S$	

Identity


Equilibrium condition

■ Behavioural equation

Box 2 How to install R and run a toy model

- a) Download and install \mathbb{R} (free software)
- b) Download and install *R-Studio Desktop* (free version)
- c) Alternatively, use <u>Posit Cloud</u> (free online platform for *R* and *Python*)
- d) Get familiar with R using the Cheat Sheet
- e) Download toy models from my GitHub repository
- f) Open the file and execute the entire code by clicking Source or run it line by line using Run
- g) Check model variables (Data) and coefficients (Values) in the top-right pane, named Global Environment
- h) Charts are displayed in the Plots tab in the bottom-right pane
- i) Tables and Sankey diagrams are displayed in the Viewer tab in the bottom-right pane (note: always re-run the last coding block to visualise them)

Box 3 Panes in RStudio

Tip: if you want to change your background, go to Tools / Global Options / Appearance and then select your favourite settings

- **1. Source editor:** opens, edits, and executes program files.
- **2. Console or command line:** types codes that are run immediately. Messages are also displayed here.
- **3. Environment:** shows objects (data frames, arrays, values, and functions), including variables and coefficients of the model.
- 4. Bottom-right pane:
 - Files: file manager
 - Plots: displays plots
 - Packages: packages manager
 - Help: searches for *R* documentation
 - Viewer: visualises HTML codes (including tables and Sankey diagrams)
 - Presentation: create HTML5 presentations using a combination of *Markdown* and *R*

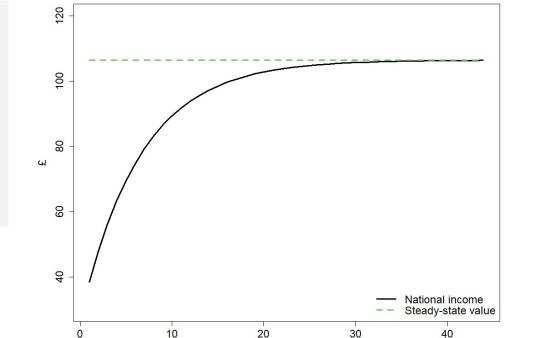
3 Simulations

Dynamics

Stationary (quasi steady-state) solution: $Y^* = \frac{G + r \cdot B_h^* \cdot (1 - \theta)}{\theta}$

Tip: how to find the quasi steady-state

Notice that C = YD and $B_{h,-1} = B_h = B^*$ in steady state.


Use C = YD in equation (1), from which:

$$Y^* = YD + G.$$

Next, use equations (2) and (3) in *Y*, from which:

$$Y^* = (Y^* + r \cdot B_h^*) \cdot (1 - \theta) + G.$$

Next, solve for Y^* .

Time

Figure 1 Evolution of national income following initial government spending

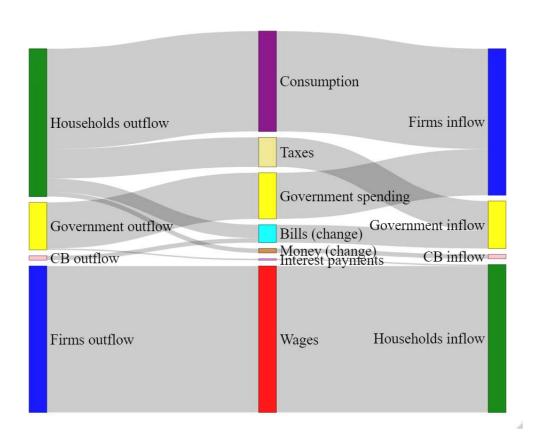
$$G = 20$$

 $r = 0.025$
 $\theta = 0.2$
 $B_h^* \sim 64.87$

$$Y^* \sim 106.49$$

BS steady-state values

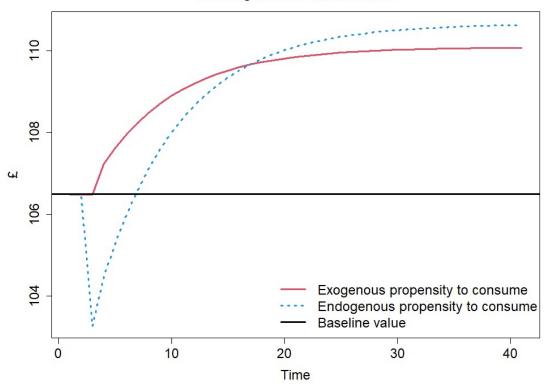
	Households	Firms (production)	Central Bank	Government	Σ
Money (cash)	+21.62		-21.62		0
Bills	+64.87		+21.62	-86.49	0
Balance (net worth)	-86.49			+86.49	0
Σ	0	0	0	0	0


Notes: A '+' before a magnitude denotes an asset; a '-' denotes a liability.

TFM steady-state values

	Households	Firms (production)	Banks	Central Bank	Government	Σ
Consumption	-86.49	+86.49				0
Gov. spending		+20			-20	0
Income=GDP	+106.49	-106.49				0
Interest payments	+1.62			+0.54	-2.16	0
CB profits				-0.54	+0.54	0
Taxes	-21.62				+21.62	0
Δ in cash	0			0		0
Δ in bills	0			0	0	0
Σ	0	0	0	0	0	0

Notes: A '+' before a magnitude denotes a receipt or a source of funds; a '-' denotes a payment or a use of funds


Sankey diagram of transactions (t=5)

Experiment: a loose monetary policy

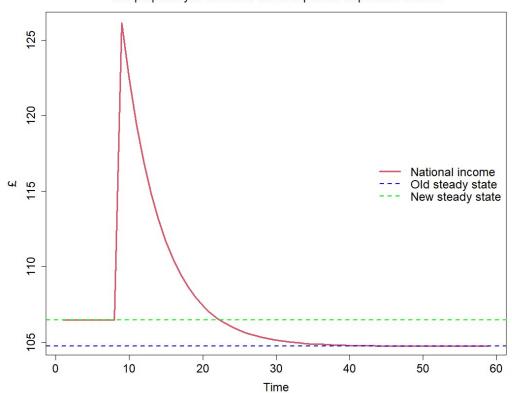
Higher interest rate on government bonds: $r = 0.025 \rightarrow 0.035$

Figure 2 Evolution of national income following increase in interest rate

Scenario *blue*

Additional equation:

$$\alpha_1 = \alpha_{11} - \alpha_{12} \cdot r$$


Coefficient values:

$$\alpha_{11} = 0.65$$

$$\alpha_{12} = 2$$

Another surprise: no paradox of thrift!

Figure 3 Rise and fall of national income (GDP) following an increase in the propensity to consume out of expected disposable income

Note. The consumption function is:

$$C = \alpha_1 \cdot YD + \alpha_2 \cdot V_{-1}$$

which, under the steady state, becomes:

$$YD = \alpha_1 \cdot YD + \alpha_2 \cdot V$$

from which we obtain:

$$\frac{V}{YD} = \alpha_3$$
, with: $\alpha_3 = \frac{1 - \alpha_1}{\alpha_2}$

Households have a target level of wealth:

$$V^T = \alpha_3 \cdot YD$$

where α_3 is their stock-flow norm.

If α_1 or α_2 increase then α_3 reduces.

It can be shown that $Y^* = f^+(\alpha_3)$. The reason is that a higher V implies a higher B_h , which implies higher interest payments from the government, which imply a higher income!

Introducing adaptive expectations

Figure 4 Rise and fall of national income (GDP) following an increase in the propensity to consume out of expected disposable income

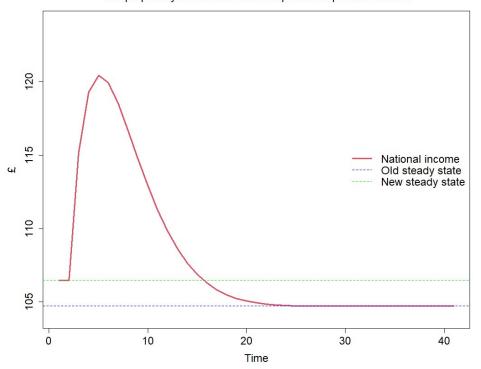
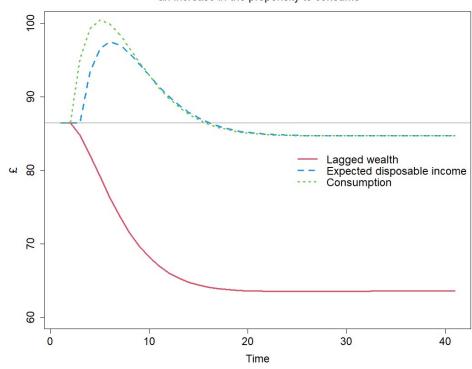



Figure 5 Evolution of C, expected YD and V following an increase in the propensity to consume

New steady states for different values of $ar{r}$

4 Modelling PC in R

Other shocks

- Let us code the model in an R environment and perform the following experiments:
 - a) Δ in tax rate
 - b) Δ in propensities to consume
 - c) Δ in portfolio coefficients (bills)
 - d) Δ in interest rate (paradoxical effect)
 - e) Δ in interest rate
 - f) New equation for consumption
 - g) Introduce expectations
- Go to the <u>code</u>...

Useful web resources for SFC modellers

Authors	Description	Link
Alessandro Bramucci	Interactive Macro - Website collecting a series of simulators programmed in R and Shiny of some famous macroeconomic textbook models.	<u>Link</u>
Alessandro Caiani	JMAB - Simulation tool designed (with Antoine Godin) for AB-SFC macroeconomic modeling.	<u>Link</u>
Yannis Dafermos	DEFINE - Ecological stock-flow consistent model that analyses the interactions between the ecosystem, the financial system and the macroeconomy (developed with Maria Nikolaidi and Giorgos Galanis).	<u>Link</u>
Michal Gamrot	Godley package - R package for simulating SFC (stock-flow consistent) models.	<u>Link</u>
Antoine Godin	SFC codes - R and Python codes collected from seminars and lectures.	<u>Link</u>
Andrea Luciani	Bimets package - R package developed with the aim to ease time series analysis and to build up a framework that facilitates the definition, estimation, and simulation of simultaneous equation models.	<u>Link</u>
Joao Macalos	SFCR package - R package providing an intuitive and tidy way to estimate stock-flow consistent models.	<u>Link</u>
Jo Michell	SFC codes - R and Python codes collected from seminars and lectures.	<u>Link</u>
Franz Prante and Karsten Kohler	DIY Macroeconomic Model Simulation - Platform providing an open source code repository and online script for macroeconomic model simulation.	<u>Link</u>
Marco Veronese Passarella (marxianomics)	SFC codes - R, Python, Matlab and EViews codes collected from papers, seminars and lectures.	<u>Link</u>
Marco Veronese Passarella (GitHub)	SFC codes - R, Python, Matlab and EViews codes collected from papers, seminars and lectures.	<u>Link</u>
Gennaro Zezza	sfc.models.net - Repository containing original EViews (and Excel) codes that replicate experiments from Godley and Lavoie's "Monetary Economics", and additional (R and EViews) codes from the SFC literature.	<u>Link</u>

Selected references

KEY READINGS

• W. Godley and M. Lavoie (2007). <u>Monetary Economics. An Integrated Approach to Credit, Money, Income, Production and Wealth</u>. Palgrave Macmillan, chapters 1, 2, 3, 4, 7.

ADDITIONAL READINGS

- W. Godley (1999). Seven Unsustainable Processes. Levy Institute Strategic Analysis, January 1999.
- C.H. Dos Santos (2006). <u>Keynesian Theorising During Hard Times: Stock-Flow Consistent Models as an Unexplored 'Frontier' of Keynesian Macroeconomics</u>. *Cambridge Journal of Economics*, 30 (4), 541-565.
- M. Nikiforos and G. Zezza (2017). <u>Stock-Flow Consistent macroeconomic Models: A Survey</u>. *Journal of Economic Surveys*, 31 (5), 1204-1239.
- Emilio Carnevali, Matteo Deleidi, Riccardo Pariboni, Marco Veronese Passarella (2019). <u>Stock-Flow Consistent Dynamic Models: Features, Limitations and Developments</u>. In: Philip Arestis, Malcolm Sawyer (eds.): *Frontiers of Heterodox Macroeconomics*, Palgrave Macmillan, 2019, pp. 223-276.

Download lectures' material from:

https://github.com/marcoverpas/Six lectures on sfc models

Thanks

For information, contact: <u>marco.veronesepassarella@univaq.it</u>