Introduction to SFC Dynamic Models Lecture E Ecological and Input-Output SFC Models

Marco Veronese Passarella

Department of Industrial and Information Engineering and Economics University of L'Aquila – Italy
Leeds University Business School
University of Leeds – UK

Download lectures' material from:

https://github.com/marcoverpas/Six_lectures_on_sfc_models

Schedule

- A. Foundations of SFC Models for Economic Research
- B. A Toy Model with State Money and Bills
- C. A Toy Model with Bank Money and Fixed Capital
- D. Multi-Country SFC Models
- E. Ecological and Input-Output SFC Models
 - 1. Introduction
 - 2. Accounting of Model IO-PC
 - 3. Simulations of Model IO-PC
 - 4. Introducing the ecosystem
- F. Empirical SFC Models (using Bimets)

1 Introduction

Box 1 Steps for developing a SFC model

- 1. Identify sectors to be modelled (households, firms, etc.)
- 2. Create balance-sheet (BS) of the economy
- 3. Create transactions-flow matrix (TFM)
- 4. Write down identities from the TFM:
 - i. Use columns to derive budget constraints
 - ii. Use also rows with multiple entries
 - iii. Identify buffer variables
- 5. Define behavioural equations and equilibrium conditions

Box 2 How to install R and run a toy model

- a) Download and install R (free software)
- b) Download and install *R-Studio Desktop* (free version)
- c) Alternatively, use Posit Cloud (free online platform for R and Python)
- d) Get familiar with R using the Cheat Sheet
- e) Download toy models from my GitHub repository
- f) Open the file and execute the entire code by clicking Source or run it line by line using Run
- g) Check model variables (Data) and coefficients (Values) in the top-right pane, named Global Environment
- h) Charts are displayed in the Plots tab in the bottom-right pane
- i) Tables and Sankey diagrams are displayed in the Viewer tab in the bottom-right pane (note: always re-run the last coding block to visualise them)

New frontiers of SFC models

- Although the origins of ecological macroeconomics can be traced back to the inception of economics itself, early SFC models for economic research did not incorporate the ecosystem.
- This gap was bridged in the late 2010s (Dafermos, Nikolaidi, and Galanis, 2017, 2018; Jackson and Victor, 2015). The primary characteristic of ecological SFC models is their integration of monetary variables (following Godley and Lavoie, 2007) with physical variables (in line with Georgescu-Roegen, 1971) in a consistent manner. Several ECO-SFC models have been developed since then.
- In contrast, there are currently only a few prototypes of input-output SFC models, despite some progress made in recent years (Berg, Hartley, and Richters, 2015; Jackson and Jackson, 2021, 2023; Valdecantos, 2023).
- However, this step is essential for analysing the interaction of the ecosystem with the economy (Hardt and O'Neill, 2017) and technical progress (Veronese Passarella, 2023).

2 Accounting of Model IO-PC

Assumptions of Model IO-PC

Model IO-PC is an IO extension of Model PC, where IO stands for input-output structure. Additional assumptions are as follows:

- Two industries
- Circulating capital only
- Fixed technical coefficients
- 1 industry = 1 technique = 1 product
- Prices are fixed
- Exogenous composition of consumption and government spending

Balance-sheet of Model IO-PC

	Households	Firms (production)	Central Bank	Government	Σ
Money (cash)	$+H_h$		$-H_{S}$		0
Bills	$+B_h$		$+B_{cb}$	$-B_{\mathcal{S}}$	0
Balance (net worth)	$-V_h$			$+V_{\!g}$	0
Σ	0	0	0	0	0

Notes: A '+' before a magnitude denotes an asset; a '-' denotes a liability.

Transactions-flow matrix of Model IO-PC

	Households	Firms (production)	Banks	Central Bank	Government	Σ
Consumption	-C	+C				0
Gov. spending		+G			-G	0
Income=GDP	+Y	-Y				0
Interest payments	$+r_{-1} \cdot B_{h,-1}$			$+r_{-1}\cdot B_{cb,-1}$	$-r_{-1} \cdot B_{s,-1}$	0
CB profits				$-r_{-1} \cdot B_{cb,-1}$	$+r_{-1} \cdot B_{cb,-1}$	0
Taxes	-T				+T	0
Δ in cash	$-\Delta H_h$			$+\Delta H_S$		0
Δ in bills	$-\Delta B_h$			$-\Delta B_{cb}$	$+\Delta B_{S}$	0
Σ	0	0	0	0	0	0

Notes: A '+' before a magnitude denotes a receipt or a source of funds; a '-' denotes a payment or a use of funds

Input-output table of Model IO-PC

		Demand for		O 1 1	
		Industry 1	Industry 2	Final demand	Output
Production	Industry 1	$p_1 \cdot a_{11} \cdot x_1$	$p_2 \cdot a_{12} \cdot x_2$	$p_1 \cdot d_1$	$p_1 \cdot x_1$
	Industry 2	$p_2 \cdot a_{21} \cdot x_1$	$p_2 \cdot a_{22} \cdot x_2$	$p_2 \cdot d_2$	$p_2 \cdot x_2$
	Value added	$p_1 \cdot x_1 \\ - (p_1 \cdot a_{11} \cdot x_1 + p_2 \cdot a_{21} \cdot x_1) -$	$p_2 \cdot x_2 - (p_2 \cdot a_{12} \cdot x_2 + p_2 \cdot a_{22} \cdot x_2)$	$\mathbf{p}^{\mathrm{T}} \cdot \mathbf{d} = Y$	
	Output	$p_1 \cdot x_1$	$p_2 \cdot x_2$		$\mathbf{p}^{\mathrm{T}} \cdot \mathbf{x}$

Additional equations of Model IO-PC

Unit prices:

$$\mathbf{p} = \overline{\mathbf{p}}$$

(12)

Identity

Compos. of real consumption:

$$\beta_{c} = \overline{\beta}_{c}$$

(13)

Equilibrium condition

Behavioural equation

Compos. of real gov. spending:

$$\beta_{\mathbf{g}} = \overline{\beta}_{\mathbf{g}}$$

(14)

Average consumer price:

$$p_c = \mathbf{p}^{\mathrm{T}} \cdot \mathbf{\beta_c}$$

(15)

Average price for government:

$$p_g = \mathbf{p}^{\mathrm{T}} \cdot \mathbf{\beta}_{\mathbf{g}}$$

(16)

Real final demand:

$$\mathbf{d} = \mathbf{\beta_c} \cdot c + \mathbf{\beta_g} \cdot g$$

(17)

Real gross output:

$$\mathbf{x} = \mathbf{A} \cdot \mathbf{x} + \mathbf{d}$$
, with: $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$

(18)

National income:

$$Y = \mathbf{p}^{\mathrm{T}} \cdot \mathbf{d}$$

(1.A)

Real consumption:

$$c = \alpha_1 \cdot \left(\frac{YD}{p_c} - \pi \cdot \frac{V_{-1}}{p_c}\right) + \alpha_2 \cdot \frac{V_{-1}}{p_{c,-1}}$$

(19)

Nominal consumption:

$$C = p_c \cdot c$$

(5.A)

Nominal gov. spending:

$$G = p_g \cdot g$$

(20)

3 Simulations of Model IO-PC

Sankey diagram of transactions (t=5)

Industrial interdependencies (t=5)

e) Final demand for product 1 g) Market for product 1 a) Industry 1 output c) Industry 1 inputs d) Industry 2 inputs b) Industry 2 output h) Market for product 2 f) Final demand for product 2

....

Dynamics of Model IO-PC

Dynamics of Model IO-PC (cont'd)

4 Introducing the ecosystem

Towards a comprehensive model

Other non-monetary channels

Ecological feedbacks and damages

Additional assumptions of Model ECO-PC

Model ECO-PC is an ecological extension of the IO-PC model, where ECO stands for ecological. Additional assumptions are as follows:

- 2 types of reserves: matter and energy
- 2 types of energy: renewable and non-renewable
- Resources are converted into reserves at a certain rate
- Industrial CO2 emissions are associated with the use of non-renewable energy
- Atmospheric temperature is a growing function of CO2 emissions
- Both goods from industry 1 and industry 2 can be durable or non-durable
- A share of durable goods (hence socio-economic stock) is discarded in every period
- Both waste and emissions are produced only by the firm sector

Physical flow matrix of ECO-PC

	Natural reserves		
	Matter (Gt)	Energy (EJ)	
Inputs			
Extracted matter	+mat		
Recycled socio-economic stock	+rec		
Renewable energy		+ren	
Non-renewable energy	+cen	+nen	
Oxygen	+02		
Outputs			
Industrial CO2 emissions	-emis		
Discarded socio-economic stock	-dis		
Dissipated energy		-en	
Change in socio-economic stock	$-\Delta k_h$		
Total	0	0	

Source: my elaboration on <u>Dafermos, Nikolaidi and Galanis (2017)</u>

Physical stock-flow matrix of ECO-PC

	Material reserves	Energy reserves	CO2 concentration	Socio-economic stock
Initial stock	$k_{m,-1}$	$k_{e,-1}$	$CO2_{-1}$	$k_{h,-1}$
Resources converted into reserves	$+conv_m$	$+conv_e$		
CO2 emissions			+emis	
Production of material goods				$+x_{mat}$
Extraction of matter / use of energy	-mat	-en		
Destruction of socio-economic stock				-dis
Final stock	k_m	k_e	<i>CO</i> 2	k_h

Source: my elaboration on <u>Dafermos, Nikolaidi and Galanis (2017)</u>. Notes: matter = GT; energy = EJ.

Simulations of Model ECO-PC

Figure 2 CO2 emissions following climate-change induced reduction in propensity to consume

induced reduction in propensity to consume

Figure 4 Change in atm. temperature following climate-change induced reduction in propensity to consume

Useful web resources for SFC modellers

Authors	Description	Link
Alessandro Bramucci	Interactive Macro - Website collecting a series of simulators programmed in R and Shiny of some famous macroeconomic textbook models.	<u>Link</u>
Alessandro Caiani	JMAB - Simulation tool designed (with Antoine Godin) for AB-SFC macroeconomic modeling.	<u>Link</u>
Yannis Dafermos	DEFINE - Ecological stock-flow consistent model that analyses the interactions between the ecosystem, the financial system and the macroeconomy (developed with Maria Nikolaidi and Giorgos Galanis).	<u>Link</u>
Michal Gamrot	Godley package - R package for simulating SFC (stock-flow consistent) models.	<u>Link</u>
Antoine Godin	SFC codes - R and Python codes collected from seminars and lectures.	<u>Link</u>
Andrea Luciani	Bimets package - R package developed with the aim to ease time series analysis and to build up a framework that facilitates the definition, estimation, and simulation of simultaneous equation models.	<u>Link</u>
Joao Macalos	SFCR package - R package providing an intuitive and tidy way to estimate stock-flow consistent models.	<u>Link</u>
Jo Michell	SFC codes - R and Python codes collected from seminars and lectures.	<u>Link</u>
Franz Prante and Karsten Kohler	DIY Macroeconomic Model Simulation - Platform providing an open source code repository and online script for macroeconomic model simulation.	<u>Link</u>
Marco Veronese Passarella (marxianomics)	SFC codes - R, Python, Matlab and EViews codes collected from papers, seminars and lectures.	<u>Link</u>
Marco Veronese Passarella (GitHub)	SFC codes - R, Python, Matlab and EViews codes collected from papers, seminars and lectures.	<u>Link</u>
Gennaro Zezza	sfc.models.net - Repository containing original EViews (and Excel) codes that replicate experiments from Godley and Lavoie's "Monetary Economics", and additional (R and EViews) codes from the SFC literature.	<u>Link</u>

Selected references

KEY READINGS

W. Godley and M. Lavoie (2007). <u>Monetary Economics. An Integrated Approach to Credit, Money, Income, Production and Wealth</u>. Palgrave Macmillan, chapters 1, 2, 3, 4, 7.

ADDITIONAL READINGS

- W. Godley (1999). Seven Unsustainable Processes. Levy Institute Strategic Analysis, January 1999.
- C.H. Dos Santos (2006). <u>Keynesian Theorising During Hard Times: Stock-Flow Consistent Models as an Unexplored 'Frontier' of Keynesian Macroeconomics</u>. *Cambridge Journal of Economics*, 30 (4), 541-565.
- M. Nikiforos and G. Zezza (2017). Stock-Flow Consistent macroeconomic Models: A Survey. Journal of Economic Surveys, 31 (5), 1204-1239.
- Emilio Carnevali, Matteo Deleidi, Riccardo Pariboni, Marco Veronese Passarella (2019). Stock-Flow Consistent Dynamic Models: Features, Limitations and Developments. In: Philip Arestis, Malcolm Sawyer (eds.): Frontiers of Heterodox Macroeconomics, Palgrave Macmillan, 2019, pp. 223-276.

Download lectures' material from:

https://github.com/marcoverpas/Six_lectures_on_sfc_models

Thanks

For information, contact: marco.veronesepassarella@univaq.it