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What is Econometrics

@ “Econometrics” iX il f& Ragnar Frisch (1895-1973) % BH ).
@ Ragnar Frisch

o the three principal founders of the Econometric Society
o first editor of the journal Econometrica
o co-winner of the first Nobel Memorial Prize in Economic Sciences in 1969

Bt 4% (CUFE) Econometrics February 27, 2025



A word of explanation regarding the term econometrics may be in order. Its definition
is implied in the statement of the scope of the [Econometric] Society, in Section I of
the Constitution, which reads: “The Econometric Society is an international society
for the advancement of economic theory in its relation to statistics and mathematics....
Its main object shall be to promote studies that aim at a unification of the
theoretical-quantitative and the empirical-quantitative approach to economic
problems....”
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But there are several aspects of the quantitative approach to economics, and no single
one of these aspects, taken by itself, should be confounded with econometrics. Thus,
econometrics is by no means the same as economic statistics. Nor is it identical with
what we call general economic theory, although a considerable portion of this theory
has a defininitely quantitative character. Nor should econometrics be taken as
synonomous with the application of mathematics to economics. Experience has
shown that each of these three view- points, that of statistics, economic theory, and
mathematics, is a necessary, but not by itself a sufficient, condition for a real
understanding of the quantitative relations in modern eco- nomic life. It is the
unification of all three that is powerful. And it is this unification that constitutes
econometrics.

Ragnar Frisch, Econometrica, (1933), 1, pp. 1-2.
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The Probability Approach to Econometrics

Trygve Haavelmo (1911-1999, winner of the 1989 Nobel Memorial Prize in
Economic Sciences) argued that quantitative economic models must necessarily be
probability models (by which today we would mean stochastic). Deterministic models
are blatently inconsistent with observed economic quantities, and it is incoherent to
apply deterministic models to non-deterministic data. Economic models should be
explicitly designed to incorporate randomness; stochastic errors should not be simply
added to deterministic models to make them random. Once we acknowledge that an
economic model is a probability model, it follows naturally that an appropriate tool
way to quantify, estimate, and conduct inferences about the economy is through the
powerful theory of mathematical statistics.
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o structural approach : A probabilistic economic model is specified, and the
quantitative analysis performed under the assumption that the economic model is
correctly specified. Researchers often describe this as  “taking their model
seriously” . The structural approach typically leads to likelihood-based analysis,
including maximum likelihood and Bayesian estimation.

@ quasi-structural approach: A criticism of the structural approach is that it is
misleading to treat an economic model as correctly specified. Rather, it is more
accurate to view a model as a useful abstraction or approximation.

The quasi-structural approach to inference views a structural economic model as
an approximation rather than the truth. This theory has led to the concepts of the
pseudo-true value (the parameter value defined by the estimation problem), the
quasi-likelihood function, quasi-MLE, and quasi-likelihood inference.
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o semiparametric approach: A probabilistic economic model is partially
specified but some features are left unspecified. This approach typically leads to
estimation methods such as least squares and the Generalized Method of
Moments. The semiparametric approach dominates contemporary econometrics

o calibration approach Similar to the quasi-structural approach, the calibration
approach interprets structural models as approximations and hence inherently
false. The difference is that the calibrationist literature rejects mathematical
statistics (deeming classical theory as inappropriate for approximate models) and
instead selects parameters by matching model and data moments using
non-statistical ad hoc methods.
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Econometric Terms and Notation

o data, dataset, sample: Xf—Z A EMT—HELZME, Hlw, FF—IRF

?'7; PINRY, RO AR BERE. FRMHAR D Ry
Ak o

@ observations: XA EMAFEENE. —HEIMA] observation Jl ¥ X N T
—ANRFE LU BAL, SO LTI — B R R . I

o H: M Y. X ZFERRTBER. Bl YRAWWRER, X ZRRHBHRTE,

o M/NGHILFRE, fx, RAR—A scalaro FIEW LA x B x Fomo

X1
X2
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Econometric Terms and Notation

o X FKnHikE.

0 3,0,02 FRFRHSH (estimand) .

o 3,0 7% estimator.

o XfT—4HHEIE, W PAMFH—H estimate,
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Standard Data Structures

@ cross-sectional (FE#(E) , time series (IF[E]F4Y) , panel (JEHR) , clustered,

and spatial.

o clustered: 7ERFHAEr, WIMME AR R, X SCHEABI A Eh
SLHY, AHAVFERFAN AL, 5 HARSEE N EZDONET, Rkt
T B IS WA N DR 22 B G5 A A T A

o spatial: X KR 75 — Al EARBRO IR . ARIE— AR BE (i, Hb
BRI , B EARE . SREARF, ZER AT
AR WL DB AR R ELAROR R, I LI A TR 6 R Ry W A

© KR ST EL L A B AR AR X R AR T A -
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The variables (Y;, X;) are a sample from the distribution F if they are identically
distributed with distribution F.

.

Definition

The variables (¥;, X;) are a random sample if they are mutually independent and
identically distributed (i.i.d.) across i = 1, ..., n.

v
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Chapter 2 Conditional Expectation and Projection

@ The most commonly applied econometric tool is least squares estimation, also
known as regression.

o Least squares is a tool to estimate the conditional mean of one variable (the
dependent variable) given another set of variables (the regressors,
conditioning variables, or covariates).

@ In this chapter we abstract from estimation and focus on the probabilistic
foundation of the conditional expectation model and its projection
approximation.
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The Distribution of Wages

@ We view the wage of an individual worker as a random variable wage with the
probability distribution

F(u) = Plwage < u]

@ When a distribution function F is differentiable we define the probability density

function i
= —F
flw) = = Flw)

@ mean or expectation

n=EN =3 nP[Y =7

p=E[Y] = /_Oo yy)dy
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Conditional Expectation

——- white men
—— white women
- black men

black women

6 18 32 46

(a) Women and Men (b) By Gender and Race

Figure 2.2: Log Wage Density by Gender and Race
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o conditional expectations

E[log( wage ) | gender = man] = 3.05
E[log( wage ) | gender = woman | = 2.81
E[log( wage ) | gender = woman, race = Black | = 2.73.
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Logs and Percentages

Take two positive numbers a and b. The percentage difference between a and b is

—b
p=1002
a 4
T
b + 100
Taking natural logarithms:
loga — logb = log (1 + L)
100

2

THREIF: log(l+x) =x— %—F% - %—H-- =x+0(x?), Fibhlog(1l+x) ~x.
B3] p~100(loga — logb)
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expectation of log transformed random variables

Take two random variables X7, X5 > 0. It will be useful to define their geometric
means 0; = exp(E[logX;]) and 03 = exp(E[log X2]). The difference in the
expectation of the log transforms (multiplied by 100) is

100 (E [logX3] — E [logX1]) = 100 (log 62 — log 1) ~p

The difference between the average of the log transformed variables is
(approximately) the percentage difference in the geometric means.
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I%[log()ﬁ)]
= 72?:1 log(X1;)
= toe(ITy X1

1

= log (H?:l Xli) "
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Conditional Expectation Function

@ Conditional expectations can be written with the generic notation
E[Y[ Xy =x1,X2 = X2, ..., Xk = x4 = m (x1,x2,..., %)

@ We call this the conditional expectation function (CEF).
@ or greater compactness we typically write the conditioning variables as a vector
in Rk:
X1

X2
X:

Xk

@ CEF can be written as :
E[Y1X = x| = m(x)

o W XHUER x B, Y WIXER m(x).
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Continuous Variables

o XETRERHCA fIv,x) M A A0, 5B x W3 s SN
mm=[«MM@

o MTAEREML fi(x) > 0 M x, 4 XY MZIFEBERBON

S, x)
Sx(x)

@ The CEF of Y given X = x is the expectation of the conditional density

fy|X()’ | x) =

mm=wﬂx=ﬂ=/wmmﬂn@
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Law of Iterated Expectations

Simple Law of Iterated Expectations
IfE|Y| < oo then for any random vector X,

E[E[Y | X]] = E[Y]
FAF IR ST IO .
TR X, .
E[Y | X)] = ZIE V| X=x]PX=x]
TS X,

E[E[Y| X] = / B[V | X = aff(x)ds
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CEF Error

@ The CEF error e is defined as the difference between Y and the CEF evaluated at

X:
e=Y—m(X)

Properties of the CEF error If E|Y| < oo then
o ElelX] =0
o Ele] =0
o IfE|Y]" < oo forr > 1 then Ele|” < oo
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Ele | X] = E[(Y - m(X)) | X]
— E[¥ | X] - E[m(X) | X]
— m(X) — m(X) = 0

Ele] = E[E[e | X]] = E[0] = 0
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@ The condition Ele | X] = 0 is implied by the definition of e as the difference
between Y and the CEF m(X). The equation E[e | X] = 0 is sometimes called a
conditional mean restriction, since the conditional mean of the error e is restricted
to equal zero. The property is also sometimes called mean independence, for the
conditional mean of e is 0 and thus independent of X. However, it does not imply
that the distribution of e is independent of X. Sometimes the assumption ” e is
independent of X ” is added as a convenient simplification, but it is not generic
feature of the conditional mean. Typically and generally, e and X are jointly
dependent even though the conditional mean of e is zero.
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Regression Variance

@ An important measure of the dispersion about the CEF function is the
unconditional variance of the CEF error e.

o? = varle] = E [(e — E[e])?] =E [¢?]

Theorem (2.5)

IfE [Y?] < oo then 0% < oc.

@ We can call o2 the regression variance or the variance of the regression etror.
The magnitude of o2 measures the amount of variation in ¥ which is not
“explained” or accounted for in the conditional expectation E[Y | X].
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IfE [YZ] < 00 then

var[Y] > var[Y—E[Y | Xi]] > var[Y — E[Y | X1, X2]]

This Theorem says that the variance of the difference between Y and its conditional
expectation (weakly) decreases whenever an additional variable is added to the

conditioning information.

February 27, 2025
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Best Predictor

Suppose that given a random vector X we want to predict or forecast Y. We can write
any predictor as a function g(X) of X. The (ex-post) prediction error is the realized
difference Y — g(X). A non-stochastic measure of the magnitude of the prediction
error is the expectation of its square

E [(Y - g(x))?]

We can define the best predictor as the function g(X) which minimizes
E [(Y — g(X))?]. What function is the best predictor? It turns out that the answer is
the CEF m(X). This holds regardless of the joint distribution of (7, X).
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To see this, note that the mean squared error of a predictor g(X) is

E[

E[¢*] +

E [¢*] +E [(m(X) — g(X))?]
E[¢]

E|
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Conditional Expectation as Best Predictor If E [YQ] < 00, then for any predictor

g(X),
E[(Y-g(X))?] 2 E [(Y - m(X))?]

where m(X) = E[Y | X].
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Conditional Variance

@ While the conditional mean is a good measure of the location of a conditional
distribution it does not provide information about the spread of the distribution.
A common measure of the dispersion is the conditional variance. We first give
the general definition of the conditional variance of a random variable 7.

Definition

IfE [W?] < oo, the conditional variance of I given X = x is
o?(x) =var[W | X=x] =E[(W—-E[W | X=x])? | X=x].

The conditional variance treated as a random variable is var[¥ | X] = o2 (X).
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Definition

IfE [eQ] < 00, the conditional variance of the regression error e given X = x is
o*(x)=varle | X=x] =E [¢* | X=x].

The conditional variance of e treated as a random variable is var[e | X] = o2(X).

Econometrics February 27, 2025



AR TTZMTCAAT T 22 Z IR &

IfE [X?] < oo then

var[X] = E[var[X | W]] + var[E[X | W]].
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Homoskedasticity and Heteroskedasticity

Ie) J5 ZE A0 7 0 22

The error is homoskedastic if 2 (x) = o2 does not depend on x.

Definition

The error is heteroskedastic if o2 (x) depends on x.

February 27, 2025
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Regression Derivative

One way to interpret the CEF m(x) = E[Y | X = x] is in terms of how marginal
changes in the regressors x imply changes in the conditional mean of the response
variable Y. It is typical to consider marginal changes in a single regressor, say X7,
holding the remainder fixed. When a regressor X; is continuously distributed, we
define the marginal effect of a change in X7, holding the variables X5, . . ., X fixed, as
the partial derivative of the CEF

0
—m ()Cl, ‘e ,xk) .

8)61

When X7 is discrete we define the marginal effect as a discrete difference. For
example, if x; is binary, then the marginal effect of X7 on the CEF is

m(1,x9,...,x;) —m(0,x2,...,%).
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Regression Derivative

We can unify the continuous and discrete cases with the notation

Vim(x) = (%m (X1 ey Xk) if X7 is continuous
! ol m(1,x,. ., x0) —m(0,x2, ..., Xk) if X1 is binary.

Collecting the £ effects into one £ x 1 vector, we define the regression derivative with
respect to X :
Vim(x)
Vam(x)
Vm(x) = )

Vem(x)

When all elements of X are continuous, then we have the simplification
Vm(x) = Zm(x), the vector of partial derivatives.
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Linear CEF

@ An important special case is when the CEF m(x) = E[Y | X = x] is linear in x. In
this case we can write the mean equation as

m(x) =x181 +x282 + - + Xk B + Bry1-

LA AEIX B SR A A H B By — A 0 3K

o Notationally it is convenient to write this as a simple function of the vector x. An
easy way to do so is to augment the regressor vector X by listing the number ” 1 ”
as an element. We call this the ”constant” and the corresponding coefficient is
called the “intercept”. Equivalently, specify that the final element ? of the vector
xisxy = 1.
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@ With this redefinition, the CEF is

m(x) =x101 +x202+ -+ B =x'8 (1
where
B1
s=|
B

is a k x 1 coefficient vector. This is the linear CEF model. It is also often called
the linear regression model, or the regression of ¥ on X.
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Linear CEF Model
Y=XpB+e

Ele| X] =0

A,

Homoskedastic Linear CEF Model

Y=XpB+e
Ele| X]=0
E[e&* | X] = o?

4
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Linear CEF with Nonlinear Effects

m (x1,x2) = X151 + X232 + X183 + X384 + x1x235 + B (2)
To simplify the expression we define the transformations x3 = x?, x4 = x3, x5 = X1x2,
and xg = 1, and redefine the regressor vector as x = (x, ... ,xG)/. With this

redefinition, m (x1,x2) = x’ 8 which is linear in 8. For most econometric purposes
(estimation and inference on 3 ) the linearity in /3 is all that is important.

Bt 4% (CUFE) Econometrics February 27, 2025



An exception is in the analysis of regression derivatives. In nonlinear equations such
as 2 the regression derivative should be defined with respect to the original variables
not with respect to the transformed variables. Thus

0
P (x1,x2) = f1 + 2x1 83 + X205
X1

p (x1,x2) = B2 + 2x284 + x155.

X2

We see that in the model 2, the regression derivatives are not a simple coefficient, but
are functions of several coefficients plus the levels of (x;,x3). Consequently it is
difficult to interpret the coefficients individually. It is more useful to interpret them as
a group.

We typically call 55 the interaction effect. Notice that it appears in both regression
derivative equations and has a symmetric interpretation in each. If 85 > 0 then the
regression derivative with respect to x; is increasing in the level of xo (and the
regression derivative with respect to xo is increasing in the level of x; ), while if

Bs < 0 the reverse is true.
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Linear CEF with Dummy Variables

@ When all regressors take a finite set of values it turns out the CEF can be written
as a linear function of regressors.

@ This simplest example is a binary variable which takes only two distinct values.
For example, in traditional data sets the variable gender takes only the values
man and woman (or male and female). Binary variables are extremely common
in econometric applications and are alternatively called dummy variables or
indicator variables.

@ the conditional mean can only take two distinct values. For example:

po if  gender = man

E[Y | gender ] = { wp if  gender = woman .

@ To facilitate a mathematical treatment we record dummy variables with the
values 0, 1. For example

Y. — 0 if gender = man
711 if gender = woman.
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Given this notation we write the conditional mean as a linear function of the
dummy variable X;. Thus E [Y | X1] = $1.X1 + B2 where 81 = 1 — po and

B2 = po. In this simple regression equation the intercept 35 is equal to the
conditional mean of Y for the X7 = 0 subpopulation (men) and the slope 3; is
equal to the difference in the conditional means between the two subpopulations.

Alternatively,

Y — 1 if gender = man
171 0 if gender = woman.

XA —AGRERRAKIE . WS X aER T, W% Xs b
PRSI . FTARGZIRG R “BE” B Lok
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Now suppose we have two dummy variables X7 and X5. For example, X5 = 1 if the
person is married, else Xo = 0. The conditional mean given X7 and X5 takes at most
four possible values:

poo if Xy =0and Xy =0 (unmarried men)
_ por if Xg=0andXo =1 (married men)
E[Y|X,Xe] = pip if Xy =1land Xy =0 (unmarried women)
pp if Xy =1landXo =1 (married women).

In this case we can write the conditional mean as a linear function of X, X5 and their
product X7 X5 :

E[Y| X1, Xz] = B1X1 + BaXo + B3X1Xo + B

where 31 = 110 — oo, 2 = Ho1 — Koo, B3 = p11 — ft10 — Ho1 + Hoo, and B4 = pig0-
We can view the coefficient 37 as the effect of gender on expected log wages for
unmarried wage earners, the coefficient 35 as the effect of marriage on expected log
wages for men wage earners, and the coefficient 33 as the difference between the
effects of marriage on expected log wages among women and among men.
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@ Alternatively, it can also be interpreted as the difference between the effects of
gender on expected log wages among married and non-married wage earners.
Both interpretations are equally valid. We often describe S5 as measuring the
interaction between the two dummy variables, or the interaction effect, and
describe 83 = 0 as the case when the interaction effect is zero.

In this setting we can see that the CEF is linear in the three variables
(X1,X2,X1X3). To put the model in the framework of Section 2.13 we define the
regressor X3 = XX and the regressor vector as

X1

X2

X3
1

X =

So even though we started with only 2 dummy variables, the number of
regressors (including the intercept) is 4 .
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o Nt A, NEHAHMIMFRA R N EIA RAME, 4 CEF fi—& k4
PEEY? ik

1 if white pwp if Xz =1
X3 = 2 if Black E [Y ‘ X3] = H2 if X3 =2
3 if  other ps if Xz=3
° %
Y, — 1 if Black Y — 1 if  other
470 0 if notBlack 571 0 if notother.

o WA
if Xy=0andX; =0

1
X3: 2 if X4:1andX5:0
3 if X4 =0 andX5 =1.

E[Y|X3] = E[Y | Xy, X5] = S1Xs + BoX5 + f3.

February 27, 2025
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Best Linear Predictor

@ While the conditional mean m(X) = E[Y | X] is the best predictor of ¥ among all
functions of X; its functional form is typically unknown. In particular, the linear
CEF model is empirically unlikely to be accurate unless X is discrete and
low-dimensional so all interactions are included. Consequently, in most cases it
is more realistic to view the linear specification (1) as an approximation. In this
section we derive a specific approximation with a simple interpretation.

@ Theorem Conditional Expectation as Best Predictor showed that the
conditional mean m(X) is the best predictor in the sense that it has the lowest
mean squared error among all predictors. By extension, we can define an
approximation to the CEF by the linear function with the lowest mean squared
error among all linear predictors.
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Assumption (2.1)

1LE [YZ] < 00.
2. E||X]|? < oo
3. Oxx = E [XX] is positive definite.

o |X| = (x¥'x)'/2, FRIF & x By Euclidean length (BXJLHEEKJE) .
@ The first two parts of Assumption (3.1) imply that the variables Y and X have
finite means, variances, and covariances.

@ The third part of the assumption is more technical, and its role will become
apparent shortly. It is equivalent to imposing that the columns of the matrix
Quxy = E [XX'] are linearly independent, or that the matrix is invertible.

o A linear predictor for Yis a function X’ 3 for some 3 € R¥. The mean squared
prediction error is

S(8) =E [(v-xp)°|.

@ The best linear predictor of ¥ given X, written Z2[Y | X], is found by selecting the
B which minimizes S(3).
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Definition

The Best Linear Predictor of Y given X is
Y| X =Xp

where $ minimizes the mean squared prediction error
S(8) =E [(Y-X'8)°].

The minimizer
B = argminS(b)
bERK

is called the Linear Projection Coefficient.

(2.18)

Bt 4§ (CUFE) Econometrics
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1T

e S(B)=E [(Y - X’B)Z] can be written out as a quadratic function of 3:
S(6) = E [¥’] - 26'EXY] + B'E [XX] 3

o S(B) B _IKKBIENX, AT HR/MERB AR —F&kihh:

0

(8) = —2E[XY] + 2B [XX] §
2E[YY] = 2E [XX] 3
o 4 Qu=EXViskx 1, Qu=E[XX]iskx ko W LT RN
B = Oy Qxy
57
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B = 0y Oxr

© Quy —Ak x kB HRE, Qu —1Akx 1 HFE,

o FiVL sy M EIXY)(ELXX]) ™ MG REAARE

o X “Qxx = E [XX'] is positive definite” FEWRE OQxy W PARIE, FFPA—R4%
P — 2 AR o

@ best linear predictor, linear projection of Yon X (Y7 X EHIZ&EEE) -

2[Y| X =X (E[xXx))"" E[xV]
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@ The projection error is

e=Y-X3
o 1Y 43#H linear predictor FiI linear error:
Y=XB+e 3)

@ X'[3is the best linear predictor of Y given X, or the linear projection of Y on X. J§
FESMBARA ¥ XF X ] o
° “*E YE@T:':XJZO”
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o MRAA—4x, BRR—FHL-.
o WIRAWIN x,x1,x2, BEIHRERA?
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o MRRA—Ax, BR—-FEHZL-
o MRAWIA x, x1,x2, BIHRAEATA7?
o REYR AP o
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@ projection error e [t i

E[Xe] =0
° T
ElXe] = E [X (Y - X))
= E[xY] - E [XX] (E[XX']) "' E[xY]
=0
° )%%'x”ﬁl@, e &, FPLE[Xe] = 02— 0 [&. FUXNTH—1T/ %8
| ElXje] = 0
X =18, WA:

Ele] =0
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Theorem (2.9 Properties of Linear Projection Model)
Under Assumption 2.1,
Q The moments B [XX'| and E[XY] exist with finite elements.

@ The linear projection coefficient (2.18) exists, is unique, and equals

B = (E[xx']) " E[xy].

@ The best linear predictor of y given x is

2(Y|X) =X (EXx]) " E[xy].

Q The projection error e = Y — X' j3 exists. It satisfies E [*] < oo and E[Xe] = 0.
@ If X contains an constant, then Ele] = 0.
Q IfE|Y" < 00 and E||X||" < oo for r > 2 then Ele|” < co.
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It is useful to reflect on the generality of Theorem 2.9. The only restriction is
Assumption 2.1. Thus for any random variables (Y, X) with finite variances we can
define a linear equation Y = X' + e with the properties listed in Theorem 2.9.
Stronger assumptions (such as the linear CEF model) are not necessary. In this sense
the linear model ¥ = X' + e exists quite generally. However, it is important not to
misinterpret the generality of this statement. The linear equation Y = X' + e is
defined as the best linear predictor. It is not necessarily a conditional mean, nor a
parameter of a structural or causal economic model.

Linear CEF Model:
Y=Xp+e

Ele| X] =0

Bt % (CUFE) Econometrics February 27, 2025



Invertibility and Identification

e The linear projection coefficient 8 = (E [XX']) ™" E[XY] exists and is unique as
long as the k x k matrix Qxy = E [XX] is invertible. The matrix Qyy is often
called the design matrix as in experimental settings the researcher is able to
control Qxy by manipulating the distribution of the regressors X.

@ Observe that for any non-zero a € R¥,
a'Qyya =E[d'XX'a] =FE [(O/X)2:| >0

so Qxx by construction is positive semi-definite, conventionally written as

Oxy > 0. The assumption that it is positive definite means that this is a strict
inequality, E [(o/X)z} > 0. This is conventionally written as Qxx > 0. This
condition means that there is no non-zero vector « such that o’X = 0 identically.
Positive definite matrices are invertible. Thus when Qyx > 0 then

B = (E[XX'])~" E[XY] exists and is uniquely defined. In other words, if we can
exclude the possibility that a linear function of X is degenerate, then [ is
uniquely defined.
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@ Theorem 2.5 shows that the linear projection coefficient 3 is identified (uniquely
determined) under Assumption 2.1. The key is invertibility of Qxy. Otherwise,
there is no unique solution to the equation

Oxx = Qxy.

When Qyy is not invertible there are multiple solutions to (2.29). In this case the
coefficient 3 is not identified as it does not have a unique value.
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Linear Predictor Error Variance (% X))

As in the CEF model, we define the error variance as 0% = I [¢?]. Setting
Oyy = E [Y?] and Qyy = E [YX] we can write o2 as

o =E (Y- Xp)’]
=E[r?] - 2E[YX] 8 + B'E [xX'] B
= Oyy — 20vxQxy Oxy + OrxQyy QxxQxy Oxy
= Qyy — QYXQ;?)} Oxy

def
= Oyr.x.
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Regression Coefficients

RAEA —ANRERA R : X KRR —AER
Y=XB+a+e
Horpr o REBEES, X AFHASHEI. PR
E[Y] = E[X'] + E[o] + E[e]

Wy LS R : NY—N)(ﬂ+04, Horr iy = E[Y], py=E[X].
BT Ele] =0, AIPAMRE] o = py — pyBo BEMAFEN Ltk )5 72 -

Y—py=(X—py) B+e,

AR08 S P ] YA 45 SRAG ) -

— (B [(X = ) X = 1x)']) T E[(X = px) (v — )]
= var[X] ! cov(X, Y)

REOR X0 Y WP 5 2
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Regression Sub-Vectors

Let the regressors be partitioned as

We can write the projection of Y on X as

Y=XpB+e
=X1B1 + X352 +e (2.42)
E[Xe] = 0.

In this section we derive formulae for the sub-vectors 31 and [3o. Partition Qxx
conformably with X

e[ G0 82 ]-[Ehi] 2R

and similarly

eo- g |- iy |
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By the partitioned matrix inversion formula (A.3)

O Qi ] ' ar [ 01 0O Qf111~2 ~011,01205;)
Qur = [ 021 02 ] - { 02! 0% } = _Q2_2.11Q21 )
Q;l Qgg.l

def _ def _
where Q110 = Q11 — 01205, Qo1 and Qo0.1 = Q20 — 021077 Q12. Thus

| B
(%)
[ Q112 ~-01',01205; ] [ Oy ]
~05,10207 051 0>y

( Q11 2 (01 — Q12Q2_2 0sy) )
Q22 1 (Q2y Q21Q11 QlY)

_ ( Q1112Q1Y-2 ) '
0551Q2v1
We have shown that 5; = Q1_11,2Q1y.2 and B = Q2_21_1Q2m.
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Coefficient Decomposition

In the previous section we derived formulae for the coefficient sub-vectors 5, and (5.
We now use these formulae to give a useful interpretation of the coefficients in terms
of an iterated projection. Take equation (2.42) for the case dim X; = 1 so that 8; € R.

Y=X161 +XoB2 +e (2.44)
Now consider the projection of X7 on X5 :

X1 =Xoy2 +uy
E [Xgul] = 0

Yo = 03 021 and E [13] = Q1.2 = Q11 — @120, @21. We can also calculate that

E[w Y] =E[(X1 — %X2) Y] = EX1Y] — %E [XoY] = @1y — 01205 Qoy = Q1yo.

We have found that E [,
_ u
Bi = 011501y2 = -

the coefficient from the simple regression of Y on u;.
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What this means is that in the multivariate projection equation (2.44) , the coefficient
B equals the projection coefficient from a regression of Y on uy, the error from a
projection of X7 on the other regressors X2. The error u; can be thought of as the
component of X7 which is not linearly explained by the other regressors. Thus the
coefficient 31 equals the linear effect of X7 on Y after stripping out the effects of the
other variables.

There was nothing special in the choice of the variable X;. This derivation applies
symmetrically to all coefficients in a linear projection. Each coefficient equals the
simple regression of Y on the error from a projection of that regressor on all the other
regressors. Each coefficient equals the linear effect of that variable on Y after linearly
controlling for all the other regressors.
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Omitted Variable Bias

@ If variables X2 are not observed:

Y=Xim +u (2.45)

Notice that we have written the coefficient as ~; rather than 5, and the error as u
rather than e. This is because (2.45) is different than (2.42). Goldberger (1991)
introduced the catchy labels long regression for (2.42) and short regression for

(2.45) to emphasize the distinction. Typically, 81 # 71, except in special cases.
To see this, we calculate

n = EXX]) EXY
= (EXX]) T ED (X061 + XoBs + e)]
=1+ (E[X1X,)) " E[X0X5] B
= (1 + 1262

where I'15 = Q;11Q12 is the coefficient matrix from a projection of X5 on X3
where we use the notation from Section Regression Sub-Vectors.
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@ Observe that y; = 51 + 1282 # B unless I'15 = 0 or S = 0. Thus the short
and long regressions have different coefficients. They are the same only under
one of two conditions. First, if the projection of X5 on X; yields a set of zero
coefficients (they are uncorrelated), or second, if the coefficient on X5 in (2.42)
is zero. The difference I'1535 between v, and S, is known as omitted variable
bias. It is the consequence of omission of a relevant correlated variable.

o I'ip 3R Xo X0 BIRISRYE, B2 Fm Xo A1 Y BIRE R M
o i G5t i 20 A IR AT F) o o S AU UM R T A A S A B R Bl )
Ho R IIEME
o HPLLMMILIE, WHoLHZANGE A i ul ) m] BRI I At el B, R
] A 25 iR R BB R R, ARON B O
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Unfortunately the above simple characterization of omitted variable bias does not
immediately carry over to more complicated settings, as discovered by Luca, Magnus,
and Peracchi (2018). For example, suppose we compare three nested projections

Y=X\m+w
Y = X161 + X502 + us
Y=X51 + Xy + X503 + e

We can call them the short, medium, and long regressions. Suppose that the parameter
of interest is 31 in the long regression. We are interested in the consequences of
omitting X3 when estimating the medium regression, and of omitting both X5 and X3
when estimating the short regression. In particular we are interested in the question:
Is it better to estimate the short or medium regression, given that both omit X3 ?
Intuition suggests that the medium regression should be “less biased” but it is worth
investigating in greater detail. By similar calculations to those above, we find that

71 = B1+ 1282 + 13063
01 =B1 + 113283

where I'13.0 = Q1_1142Q13.2 using the notation from Section Regression Sub-Vectors.
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We see that the bias in the short regression coefficient is I'1582 + I'1333 which
depends on both 35 and (33, while that for the medium regression coefficient is I'13.0 33
which only depends on 3. So the bias for the medium regression is less complicated
and intuitively seems more likely to be smaller than that of the short regression.
However it is impossible to strictly rank the two. It is quite possible that v, is less
biased than d;. Thus as a general rule it is strictly impossible to state that estimation
of the medium regression will be less biased than estimation of the short regression.
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Best Linear Approximation

There are alternative ways we could construct a linear approximation X3 to the
conditional mean m(X). In this section we show that one alternative approach turns
out to yield the same answer as the best linear predictor.

We start by defining the mean-square approximation error of X’ 5 to m(X) as the
expected squared difference between X’ 3 and the conditional mean m(X), 55 X X' 8
A m(X) Z a2 -

d(B) = E |(m(x) - X8)°] .

The function d(f) is a measure of the deviation of X’ 3 from m(X). If the two functions
are identical then d(3) = 0, otherwise d(3) > 0. We can also view the mean-square
difference d(/3) as a density-weighted average of the function (m(X) — X’ ﬁ)Q since

43) = [ (mo) =8 fi)ds

where fy(x) is the marginal density of X.
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We can then define the best linear approximation to the conditional m(X) as the
function X' 3 obtained by selecting 8 to minimize d(/3) :

B = argmind(b) (2.46)
beRF

Similar to the best linear predictor we are measuring accuracy by expected squared
error. The difference is that the best linear predictor (2.18) selects 5 to minimize the
expected squared prediction error, while the best linear approximation (2.46) selects 5
to minimize the expected squared approximation error. Despite the different
definitions, it turns out that the best linear predictor and the best linear approximation
are identical. By the same steps as in (2.18) plus an application of conditional
expectations we can find that

8= (E[XX]) " E[Xm(X)] (2.47)
Xx')) ™' Elxy] (2.48)

(see Exercise 2.19). Thus (2.46) equals (2.18). We conclude that the definition (2.46)
can be viewed as an alternative motivation for the linear projection coefficient.
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Limitations of the Best Linear Projection

Let’s compare the linear projection and linear CEF models.

From Theorem 2.4.4 we know that the CEF error has the property E[Xe] = 0. Thus a
linear CEF is the best linear projection. However, the converse is not true as the
projection error does not necessarily satisfy E[e | X] = 0. Furthermore, the linear
projection may be a poor approximation to the CEF.

To see these points in a simple example, suppose that the true process is ¥ = X + X2
with X ~ N(0, 1). In this case the true CEF is m(x) = x + x* and there is no error.
Now consider the linear projection of ¥ on X and a constant, namely the model

Y = BX+ o+ e. Since X ~ N(0, 1) then X and X? are uncorrelated and the linear
projection takes the form &[Y | X] = X+ 1. This is quite different from the true CEF
m(X) = X + X2. The projection error equals e = X? — 1 which is a deterministic
function of X yet is uncorrelated with X. We see in this example that a projection error
need not be a CEF error and a linear projection can be a poor approximation to the
CEF.
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Another defect of linear projection is that it is sensitive to the marginal distribution of
the regressors when the conditional mean is nonlinear. We illustrate the issue in
Figure 1 for a constructed joint distribution of ¥ and X. The solid line is the nonlinear
CEF of Y given X. The data are divided in two groups - Group 1 and Group 2 - which
have different marginal distributions for the regressor X, and Group 1 has a lower
mean value of X than Group 2. The separate linear projections of ¥ on X for these two
groups are displayed in the figure by the dashed lines. These two projections are
distinct approximations to the CEF. A defect with linear projection is that it leads to
the incorrect conclusion that the effect of X on Y is different for individuals in the two
groups. This conclusion is incorrect because in fact there is no difference in the
conditional mean function. The apparent difference is a by-product of linear
approximations to a nonlinear mean combined with different marginal distributions
for the conditioning variables.
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Causal Effects

o VN EINAIAYS K M. (ERIRATHIBFFE R 50 B S
o WFFERRIEA PP :

o PIFBURIS R W1 A 5

o [RIRBLRAS mT WP o
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o CEF &%} Y W& LM (best predictor) .
o flAkin] :

min E[(Y — X'3)?]

BERP

BRI B = (E[XX)) " EXY], X3 BXF Y ByIAE e R (best linear
predictor, BLP), W &4 5% X W44 413 E(Y|X) iy BLP.

o X' J&X} CEF My fE4 k& (best linear approximation, BLA)
o E[(Y—-XB)X] =0, MIEAHE ey UFSE:

E[(E[YX] - X'8)X] = 0
o X X T4 itAL e, WRAMEH X BTN, WA+ 46k CEF.
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Approximating a Smooth Function with a Poly-nomial

Dictionary

Suppose W ~ U(0, 1) where U denotes the continuous uniform distribution, and

g(W) =exp(4- ).

We use
(W) = (1, w, W2, ... w1y

p terms
to form the BLA/BLP, 8’ T(W). Figure 1.2 provides a sequence of panels that illustrate
the approximation properties of the BLA/BLP corresponding to p = 2, 3, and 4:

e With p = 2 we get a linear in /¥ approximation to g(#). As the figure shows, the
quality of this approximation is poor.

e With p = 3 we get a quadratic-in- approximation to g(W). Here, the
approximation quality is markedly improved relative to p = 2 though
approximation errors are still clearly visible.

e With p = 4 we get a cubic-in- approximation to g(#), and the quality of
approximation appears to be excellent.
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When we have multiple variables, we may generate transforma- tions of each of the
variables and employ interactions — products involving these terms. As a simple
concrete example, consider a case with two raw regressors, W, and W5. We could
build polynomials of second order in each of the raw regressors — (1, Wy, W?),

(1, Wy, W3). We may then collect these variables along with the interaction in the raw
regressors, Wy W5 in a vector

(17 le W2a W?v Wg, W1W2)

for use in a regression model. There are, of course, many other possibilities such as
considering higher order polynomial terms, e.g. W$; higher order interactions, e.g.
W3 Wy; and other nonlinear transformations, e.g. log(W1).
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