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1 EE: RBORKIEOAR AL Tk
1.1 %=X RHEL
o 28 T RPHBMRIE: A EHLRIA IR AELE F o
Pr(D=1/X,Y° Y = Pr(D = 1|X)
ofF T HBMBIE (EBrRR): fenT R g, BAELSREEMFARRE

Assumption ID.2 E(Y? D, X) =E(Y%X), d=0,1

o S5 i
E(Y'|D =1,X)=E(Y°|D=0,X)

E(Y'D=1,X)=EY'D=0,X)



o I B ST WL & = A8 B &4 T 69 40 18] 35 4E £ B IR B S E AL BN, (X)), 71 (2), To ().

E(Y|X =2,D=1)-E(Y|X =2,D =0)
= EYY X =2,D=1)—E(Y°X =2,D =0)
= EYYX =2) - E(YX =2)

E(Y! - YO X = 2)
(z)
ZAPU ni(v), WEABEY?D=1,X)=EY°|D=0,X).

ZARP o(2), WEMABEY'D=1,X)=EY'D=0,X).
FEWI AR

\]

7(2) = m(z) = 70(2)



o 1 M RE A5 1R ) ~F- 3 A BRAA

7= Ex|r(z)]
™ = EX D = 1]
T0 = EX[TO ZL‘)|D = O]
WER, 7 # T1 # To, ES ] FX(CI?) a FX|D:1(1‘) # FX\D:O(SC)-
n =Ex[E(Y|X,D=1)-E(Y|X,D =0)|D = 1]

—E(Y|D=1)—Ex(Y|X,D = 0)|D = 1]

70 =Ex[E(Y|X,D =1) —E(Y|X,D = 0)|D = 0]
—Ex[E(Y|X,D =1)|D = 0] - E(Y|D = 0)

7 =Ex[E(Y|X,D =1)—E(Y|X,D = 0)]
= Ex[E(Y|X,D =1)] —Ex(Y|X, D = 0)



o 171} ) AL Y 2H 1) S4B B AR B Rk SR

r=E(Y|D=1)-EYI|D =0)
— Ex(E(Y|X,D =1)|D = 1) — Ex(E(Y|X, D = 0)|D = 0)

o HIAEH M) /BI /& : What is the best way to “condition” on X?



1.2 5% Tk EE
o —NYEFMILAL (exact matching) BRI T

id

treat

X

Y

1

IO Ul WIN

1

N eNeNell e

NDNDNRFE WN ==

Y1
Y2
Y3
Y4
Ys
Ye
yr
Y8

id treat control
r=1 wy1,y2 Ys
r=2 Y3 Y6, Y7, Y8
rz=3 Yq




o ATT KAt

Ti(r=1)= (—yl—;m) —Ys
7@1($:2):y3_ (y6+y7+y8)

3
(e = 3) Tkl

>

1($

+y + 2 +yr + 1
Y1ty ys)_(y5x_+y6 yr ?Jsx_)

,_.
I
>

Wl =

2
1)X§+7A'1(.’E:2)X

B ( 3 3 3 3
1 Y¢ T Y7ty
—g((yl—y5)+(y2—y5)+(y3—%)>
1
= — Z (2D; — L)wyy;
nr
lGTmCT

(1)



o ATU kit

=
I
=

1
A(x:1>><_+7to<$:2>><—

- -
7—0(27 — 1) — (yl 5 y2> ~ s

/mm:m:%_(%i%i@)
ol = B)TEREA I

3
4 4

y1+y2 1 3 y5+y6+y7+y8
( 2 >X4+%X4) ( i )

K%+m_%>+%_%%ﬂm—w%ﬂw—%ﬂ

10

(2)



e ATE Hyfili vt

3 4
Y1 + Yo 3 4 3 Yo + Y7 + Ys
( 2 >X7+y3x7) <y5><7+ 3
+yr +

[(91—95)+(92—y5)+(y3w>

Y1+ Yy

12 2—95)+(y3—y6)+(y3—y7)+(y3—ys)]
3—|—A><4

7077

'/A_(-f:Q):yg_ (y6+y7+y8>

3
7z = 3)FaiA b
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4
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13 B# Tk 2EFNTEOEMES )
o E(Y|D =1,X) ME(Y|D =0,X) KR BOBR, SRI5 MLk 553 5008 b BRAUANZ Sl A T A5

i (X)=E(Y[D=1,X)
fi0(X) = E(Y[D = 0, X)

12



o i WK —:

E(Y|D=1,X)=a; +vX
E(Y|D =0,X) = ag+~X

]
EY|X)=ao+ (a1 —)D +~vX

AT RLES Y XE D A X RSPk E] AT A T
}/i = 5(0 + ((361 — &O)Dz + ’A}/XZ +e;

53]l
7(X) = (&1 +9X) — (G0 +9X) = a1 — Go

F=7=7=d —a

oVl D A OMRE R, X BRI BT MR, D MRRRGASTHEIA X ATE, ATT it ATU #ifh
o BURERE T IR BEAL BEAION, FBURE -

13



o WAHE: M X NEHUE RN, BERA v, op MAFRBE, ME—HEMER W, = 1(X =2,

R
EY[D=1X)=a1+» %W,

r=2

R
E<Y|D - 07X) = o + ZFYTWT

r=2

B E(Y]X) = ap + (a1 — ag)D + 3,2, %W,
A RLEE Y X D AW, (r =2, R) B ENR BT AT

R
Y, =60+ (61 — &o)D; + Z%Wr +€;
r=2

F=% =7 =da — d

S I B 5 T ) 5 Ak BR A A BURE
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EY|D =1,X) = a1 +mX
E(Y|D = O,X) = +’Y()X

Bl E(Y|X) = ap+ (1 — ag)D + X + (11 —v)D - X
A GE Y X D, X R HAZ H W4k a7

Yi=do+ (1 —ao)Di +%Xi+ (1 —Y)Di - Xi + e
L 7(X;) = n(Xi) = 10(X;) = (&g — &) + (51 — %)X

7= (a1 — do) + (51 — o)
71 = (a1 — &) + (51 — J0)
fo = (&1 — &) + (%1 — Y0) X p=o

PP

D=1

BEIF RS T S BAL BN MR R TE R (S P-3 AE BERL R RE X etk A) B -
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o X R R R RN, AIDMEH WEE M WA =45 AR, Al

EY|D=1,X)=0561(X=1)+ (1(X =2) + 331(X =3)
EY|D=0,X)=m1(X =1)+%1(X =2) +31(X =3)
B
EY|D,X) =11(X =1) + %»1(X =2) + 131(X = 3)
( —m)D-1(X =1)
+ (B2 —2)D - L(X =2)
(53—73)13 (X =3)

X BRI RR AR (saturated model), BERFBIRI AL AN B BATBRBIME, B M T ILi s %o

16



T(X =k) = B —

= % Z[(ﬁl —m) - L(Xs =1) + (B2 —72) - L(Xi = 2) + (B3 — 73) - L(X; = 3)]
L= % SUB =) LK = 1)+ (B = 72) - L(X; = 2) + (B3 — 73) - 1(X; = 3)]
ieC

= %Z[(ﬁl =) L(Xs=1) + (B2 —72) - L(Xi = 2) + (B3 — 73) - L(X; = 3)]

XM IE R A Y X BRI A REII; Y4 X #EEN, BOMIDUEL (fuzzy matching) FXET ek O i Hh
(functional extrapolation) 21524 [A] 45 5

17



14 AEEZGFLEN: =26 B 282

Ly N eill
Yi= 0o+ 5D + B Xi + &

195 0L W— PRI, ViR D IR X AT, GREERRSE,

Yi=ca+aX,+Y,

iy
oLS _ COV/(Y\,D) B COV(~,D)
1T T T e/ T T =
Var(D) Var(D)

Hor g5 R4y IR bR iR o

18



o BRI T — MR B R, XM SRS FHA RGN D) (variation). 4, FEHE HHk
1,
wage, = by + by - edu; +¢;

A TGV by, BORAEA A AER T ] 2 B AR A
o BUE T AT MBI AL & (FE RATAE?)

wage, = by + b - edu; + ¢ - male; + ¢;

X

szigei = bl . edui +€;

Horp wage, il edu; 43 wage, fl edu; % male; [B] 9753 5k 2

19



* S M
p_ wage, — wage, =~ if male; =1
wage, = _ .
’ wage, — wage, if male; =0
du edu; — edu,, if male; =1
eatti = edu; — edu s if male; =0
I A5 T 01 1 5 AR TR S A R Z B E KPR g, iR AR BN R g k. B
TIHEHE ] male; FRAERR g 45k 51 1 5 2800 o

20



o R APl JNSRAR T REA T N M DX 4 o A A

R
wage, = by + b, - edu; + Z c" - region + ¢;

r=2
Hrp
., 1 ifiis from regionr
region; = .
! 0 otherwise
EMhF

vVégei = bl edui €

Herr wage, Ml edu; 4331 wage, Al edu, A i X B 3048 2 1 D49 B0 AOBR S, -t B 2t X M8 DA JG T HF
RISHE KT P T HX @R DG, BLIE A FH 7S 2 i 4 [X P 30 20 KT s 2

21



1.5 #Ed: dES5f=)a
o 5 4% 1 A8 B R e Mtk [T U 2 [ 1 85 9%; (regression adjustment) M454. FeTTBEAT DL S 807 T LA
AESZOTEAET 10(X) F0 fio(X).
o 1% (kernel regression).
- X =z BHEE Y BE3EEM X = gAY B3ME. XHEK X AR R,
—K () R, ABSRAE KL, 2RI AR B E R BOE . W IR R B -
*Uniform (rectangular) kernel:

K(u) = 51(ul < 1)

*Triangular kernel:
K(u) = (1= |u)1(|ul <1)

*Epanechnikov kernel:

K(u) = 2(1 — )1 (jul < 1)

+Gaussian kernel:

22



-Ah T

Y K (Xih_x) Y;

X, —
Z?:l K < h x)
M n—oolf, h— 0, AW (bandwidth),
- R Y BIBCEY, BEE X = o B il WA 45 3 A

o —

E(Y[X = z) =

23



o a2 M9 (local linear regression).
B8 X = o Mz rEIA

- X, —x
. 2 i
nanbn ig_l(Y;—a—b(Xi—x)) K( - )

—

EY[X =z)=a

—FEARHIEIE, GRS R BUE IR, IBALE X = o Mt ARtk 8Ol WXAHls, oI
DUAEAZ [ T A 2 SRR B 5i 181 )3 (local constant regression) o eyl & itk [|1 V38 &5 bk Jy 388 5 200 191 U1 4
BREN, UHY o BOLRER . |

VI U R R TR A B

24



DG P 9 R A o

TP FAIL AR 5 IRk (Dale and Krueger, 2002, QJE).

The college matching matrix

Private Public
Applicant Altered 1996

group Student Ivy Leafy  Smart All State Tall State  State  earnings
A 1 Reject  Admit Admit 110,000

2 Reject  Admit Admit 100,000

3 Reject  Admit Admit 110,000

B 4 Admit Admit Admit 60,000

5 Admit Admit Admit 30,000

C 6 Admit 115,000

7 Admit 75,000

D 8 Reject Admit Admit 90,000

9 Reject Admit Admit 60,000

Note: Enrollment decisions are highlighted in gray.

25



o LS AL TR -
~7(A) = —5,7(B) = 30.
-7 =(—=5)x (3/5)+30x (2/5) =9.
—71 = (—5) x (2/3) + 30 x (1/3) = 20/3.
-70 = (—=5) x (1/2) + 30 x (1/2) = 25/2.

26



1.6 EEREZHEE = LE
o DLFCAE ¥R X WAESETT 1, ToTRBUE IRl A BEAY B B A BIA N R F X W BB
ofEjE, BNf 7(x) SAMNIHEEIELM, EEARBEMEN T BT 7= Ex[r(2)] 9?2

o EMIE, WRTHTA, DUt R —M4&1ERIE (conditioning strategy), TiiHAMBIEA S F AEkE T —
P 8 2R SR WS M AR A5 50 Al A s Ay it

o3 T —: EBLHYIR AR IR A bk B 3 44 3R FIB IR — B 69— AR ID.2. F b, METF E(YX) M
E(Y°|X) B @SR —EB AT E(Y|D = 1,X) M E(Y|D = 0, X) &S8R —E#E, A
DIUERH, B LS.2 FfBis 1D.2 A B iX Wi J5 2 iR 50 ) B (identification power) J&—F£H],
INA BT kRS ARk R CI BT A MR e 09 N A M PR, R K44

27



o FiARANTBEIRNIRFE A A MR A T ATRT, 2505 M= iR, {540,
0BT MARIFHEMAMNIRAN T Y FE 44, UARARLAA PR R RN I, EHRET SN
F R SOR RN

o ZLRIE ST YRR A5 2 P AL BN W — Bl 3, T T AN SR b 2 & 0 i 2 — 4 (Imbens, 2015,
JHR):

— RF 55 3 1 e B0 AR IE A 1
— A BRI RIAN X A
S0, FAEMEA R IX (misspecification) 5| A2 8994 1R 1% (extrapolation bias).

o H M E , AL EAMIERHABARA IR, KRR AN RIRK, BT L A F DL Bl 5
%o

28



T PEAEEOE RS B BRCER (Lalonde, 1986, AER; Dehejia and Wahba, 1999, JASA, 2002, REStat).

o A3 1970 SRR R FEABOL R H o %00 H R — L Lk, M5 —MI73h s _bass B
H HFRE AIEARE . B2ES), B0 B mEma, LA RS 9-18 T H I
TAEMLE . 74 75 458 T-HRT, 78 44 THila -

eLalonde (1986) f 56l Fl 7 iX 41405, Ath 5% F Ak FRA A% 4L A6 T T ix — B0l I B 3R, A5
Ji PSID (BN HASTHAREZ)  Hh A B AR 42 b AL s r kAT T A8, BB PR Y225

eDehejia and Wahba (1999, 2002) %3, 405K R 1570 DLEEJ5 3%, T84 BIVAE P 82 0000 1 = S B g 44
W AR AR, WRRE S EMEIR.

o ST 0 21 B T T I 45 SRR A 25 000 P AL T BT 45 R A IR R ZZ e o

29



1.7 EE 7 x5

oL FE AL F X
— AR
“ a
@\K%‘\@
Y,
~ AR
)
N DD O —y
D —x) (P =y
\\ /

30



A0 LRSI AR (R “HREE (bad control)”)
o

Y

31



o DLE J5 V£ 7 2K

-t B X AR B /RN DCEE XS 5 0 J5 ¥R R th A8 B DUfiE (covariate matching) . 24 PipaE &4 B g4 & B,
AT TR DLES . ST ILEC TS RS B, S8R 4EERHL. S ILEC IS BRI E S AT i,
WAV Bl o VRSB .

—ACALDLREL o — P AR R AR A R ZH A R DA 2 ) RO o 2L AN R PV B 1) B A BB S b, 2 G G
(Mahalanobis distance), J4bPHZH MK PUHL 31X — FH & F8bn e /N 38 Hl AN

m%I(XC — Xt)'Q(Xt)_l(XC — Xt)
ce

Forpr Q) RARATy Z2- 007 Z 3 R -

=5 — MR R ATV R (FERE, WU £33 AT AR RUAE O DL e b AR B FE MR B0 , RIRE
FAE 4520 B A THE AT D DL S, XS SE R SR DL L J5 3% 1A 4543 DLBC (propensity score
matching, PSM).
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— A (replacement) : DU FRHAME RIS EE M, K& bias fl variance B o

—— it 5 I} A] DA 43 1] o 2 H W DL AR ——3c a4 & DUEE, o) DL3g 43 BE 28 5 bi e — 2 Y Rl P 1 DG i A
R——>>4% (radius) /R4 (caliper) PLHL .

—# (kernel) DLfL: —WEZ A DLREEAAIAME N, FCAUTE S 115 DA B Ao il B B 308 0k o

E(Y|X;,D=0)=)_ " (Xc _hXt)> Y

X.— X,
ceC K
()

—ERZHWEETE, ABRAURAEAR /N TR R, AR AL B2 1A P 2 DU e 5 2 R A A 4 ) 4
A, B ATT B EZAHISEE B

33



o hAZ B DLRECLIN, PIOAULACRAETA, F72 it T MiRIEIE. DL ATE A,

Y!=DY;4+(1-D T”Z{YH—M i) — 1 (Xe)}
Y= (1-D,)Y;+ D |Cl,HZ{Y+MO fio(Xe)}

ceC}

Sl f1a(X) J pa(X) = E(Y|X, D = d) f§ OLS ik

34



o fl V- I A0
—h(-) TR FEA RN THRAEFUIRMRE, iU 7 AF i DA R B R % DA logit A,

o _exp(h(X))y
PID = 1] & 7 (X) = S (h(X)7)

—FETFBLE A TR ER R
L SetRIn e i e A R AR B N GRS el fs B, AU IMABEED) -

2R EB— MR FTA — IR, XHHE A R 508351217 likelihood ratio test, 45 P& HUE KA
—KIMA h(-).
BL4 ek B AIC:
L=—(n/2)-In(2-7)— (n/2) - In(SSE/n) —n/2

AIC = (2k + 2|L])/n

3XFR T — IR E YR 2, EHBARH 0 R Gk R st v B KA T I AME Cu, = L

4R BN R (BFE-FRFBARZREI) , #ITRMUTPIER 2-3 fEE, g2 AE
Cpua = 2.71.

—MRAE L HE B () AT S57 o

35



o F8 5 DL A A Y -1 P
— AR AR L2 R (normalized difference) .

 Xr—Xc
(st + s7)/2
Bm e Y K = K
C NC—]. c c) » or NT—l t T
ceC teT

—XANGEH BAKK T AFEASME RSN t A BERSRG, EAEEREE. Ch4?)
. Xr— Xeo
V/§:cec()gi_'jo)Q/fVC‘+'§:teT<)(t__j€T>2/pWT

— IR AL R AROC, B AR A, T AR 1) 4520 EA T Y
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o ffpE B PURL: teffects nnmatch Fil nnmatch #r] ASEEL, - HABRRAE TR DL ESAN ST, (555 M mibs
WAL T AR o

o flii[n] 154 PLHL : teffects psmatch il psmatch2 #BAl PASEER, Jf H AR TR A DLEe4y, HiGH s
FRAE AL TR AR

o NL R B VLALLM £54 VLfL, W ABERA BT D uemDine, Hlant:al 17k %.

o RAEF WS A8 B DUE 315 17 75343 PL L (King and Nielsen, 2019, Political Analysis), B A 1543+
PEREATS SR B 2 A5 F
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foreach year of numlist 2008/2019{
cd "E: :
regdata20211020.dta",clear

winsor2 investment roaa employee asset leverage roac roab cashflowd cashflowd operatingincome operatingprofit , replace cuts(1,99) by(year)
controllist "leverage logasset tobinb grow roaa separation boardnum indboard_ratio largestholderrate presidentisceo”

display “year'

year=="year'
psmatch2 soe_own $controllist ,noreplace neighbor logit common

pair = _id if _treated==0
pair = _nl if _treate 1
pair: paircount = count(pair)
paircount !=2

stked

year = “year'

“year'samples, replace

38



stata: kdensity

Density

Before Matching

T T T
0 2 4 .6 .8
Propensity Score
SOE
Private enterprise

kernel = epanechnikov, bandwidth = 0.0389
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After Matching

25

1.5

Density

T T
2 4 .6 .8 1
Propensity Score

SOE
————— Private enterprise

kernel = epanechnikov, bandwidth = 0.0394
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o5 =: EEME SARD AR MR EAIEFIEMR, BRRAFBEFARE L. (50 PSM HAk
ST DG e 75 32 B — S~ o )
T g BAXNR S %K (Derrien and Kecskes, 2013, JF)
these restrictions on both groups of firms. We require that candidate control firms have the same two-digit
SIC code as our treatment firms. We also require candidate control firms to be in the same total assets
quintile, Q quintile, and cash flow quintile as our treatment firms.6 We then retain candidate control firms
that have the smallest difference in number of analysts compared to the corresponding treatment firms.
We break any remaining ties based on the smallest differences in total assets, Q, and cash flow. To this
end, we compute the difference between treatment firms and control firms for each of total assets, Q, and
cash flow. We compute the rank of the difference for each of these three variables, and we compute the
total rank across all three variables. We retain candidate control firms that have the lowest total rank.

41



S. M. Iacus, G. King, and G. Porro. Causal inference without balance checking: Coarsened exact matching.
Political analysis, 20(1):1-24, 2012.

7 HRESRS R DLEL” (Coarsened Exact Matching, CEM), B AJoit R 1-k DLELIE /& 58 2 VL AL ES B A =5 R At
X, 785 —AbEd v LA kA AL A E RS Do

CEM & 56X fridk ) S S W BlEATRAL, BT HLAL, AR M LR iE & EPUTRmILES. flhn,
Pri i R AR (4RI >50 9 1, HAthoh 0) Al (Zeth 1, HMoh 0)o feiGyrdlr, Fidh
50 & Wy Lotk B R R R AL B BAE (1, 1)

f R 2 532 67 Al FA 58 2 Al 1R MDRE AL S B Y A8 HEAT LIS . S RS AL L s, B B o0 i
M. AT, A RAEA SRR R, MiEs — ARt B8 T AMEX ISR R
A DX g B P 45 SRR e A DL e -85 BN R 45 RPN B R AT A T A . BIH ATA IR, mTRA IS T
[N i S W L5 YA - 3 = s 2 o T U W 1 RSk A e e e M WP B VAL R g P

STATA:

cem ZEL(AMN) TE2(HHHAN), treatment (XE L E) [k2k autocuts(H k)]

fil4m -

cem age(10 20 30) education(scott), treatment(treated) k2k

FRXT R 10/20/30 434, E T Scott MM 3 H, I3 il HE 2 N EH %5

42



5 T, AHEIZLIb)E
2T BN BRIEMICE, ERHRIEARIEFEGEEAERNIELSAHE T T AW IER, ATHT
ofz W ’ ,
HEE,
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1.8 —EITIRBLT &

«A survey on causal inference»

1.8.1 Re-weighting methods

oA N RSB T L2, BIWLIN B 2 75 48 32 A B 3 WA D AR K o AEACERT AL (re-
weighting) & v IR 3% 45 (i 22 B A 005 ¥ 38 13 WL OIS B A~ B 43 TS 24 A AR, Wl DA B — A
pseudo-population, f§if54b L AIXF HELH A4 23 Ah AH AU -

ebalancing score: Balancing score b(x) is a general weighting score, which is the function of x satisfying:
W Al x| b(x)

where W is the treatment assignment and z is the background variables.
o }iE b(x) MTIEARE, &'H AR propensity score.

e(x) =Pr(W =1|X =)

44



Propensity score based sample re-weighting Propensity scores can be used to reduce selection
bias by equating groups based on these covariates. Inverse propensity weighting (IPW) , also named as
inverse probability of treatment weighting (IPTW), assigns a weight r to each sample:

w n 1-W
e(x)  1—e(x)

r =

where W is the treatment assignment ( W = 1 denotes being treated group; W = 0 denotes the control
group), and e(x) is the propensity score defined above.

After re-weighting, the IPW estimator of average treatment effect (ATE) is:

—— I WY 1 1-W,)YF
ATEIPWIEZ ——Zg,

— é(z) ne= 1-é(m)

and its normalized version, which is preferred especially when the propensity scores are obtained by esti-
mation :

WY WL (WY ()
ATEIPW_; é(I,i)/Zé(xi) Z 1—eé(z;) /1—é($i)'

L, IPW MR AT propensity score Bfl R G HER, SIS F3 ATE (i EE A #E. AT
XA, BT Doubly Robust estimator (DR), X 44 Augmented IPW (AIPW),

DR estimator combines the propensity score weighting with the outcome regression, so that the esti-
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mator is robust even when one of the propensity score or outcome regression is incorrect (but not both). In
detail, the DR estimator is formalized as:

ATE, %2"; { {ZV(;/; - Wié—(:fg:ci)m(l?xi)} _ [<11_—V<§VEL§F B vlvi__éég;)m((),xi)]}
LW - (1)

(]

1 o) (Y (L) (=W (Y = (0,))
= Z{ (1, 2 (@) (0,2:) 1= ¢ }

where m (1, z;) and m (0, z;) are the regression model estimations of treated and control outcomes. The

DR estimator is consistent and therefore asymptotically unbiased, if either the propensity score is correct
or the model correctly reflects the true relationship among exposure and confounders with the outcome
[38]. In reality, one definitely cannot guarantee whether one model can accurately explain the relationship
among variables. The combination of outcome regression with weighting by propensity score ensures that
the estimators are robust to misspecification of one of these models.

The DR estimator consults outcomes to make the IPW estimator robust when propensity score estima-
tion is not correct.
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1.8.2 Stratification methods

A B TR R FREAC . FEFRIGOLT , AR BRFREAY, AbBRAIE s AAE s T iR
PURRARLR (BRERR 2), W AR BEMLIE SIS0, FrAREAFAEACH ) ATE (CATE) JEal DAGTt i
1E13 8] CATE PUjs, W AMERIXLEFREA ) CATE £ B EBRAMBON B R AC ) ATE,

In the following, we adopt the calculation of ATE as an example. In detail, if we separate the whole
dataset into J blocks, the ATE is estimated as:

ATEqpy = 750 = Z q(j) [Ya(4) = Ye(5)]

J=1

where Y;(j) and Y,(j) are the average of the treated outcome and control outcome in the j-th block, respec-
tively. ¢(j) = % is the portion of the units in the j-th block to the whole units.

Stratification effectively decreases the bias of ATE estimation compared with the difference-estimator
where ATE is estimated as: ATE gy = 7%/ = - 37 Vi =37, V€7 In particular, if we assume the
outcome is linear with the covariates, i.e., E[Y;(w) | X; = 2] = a + 7 * w + [ * x. The bias of the difference-
estimator is:

E [+ — 7| X, W] = (X, — X) 8.
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While, the bias of the stratification estimator is the weighted average of the within-block bias:

B[ — 7| X, W] = (Z q(5) (Xe(4) = Xc(j))) B.

J=1

Compared with the difference estimator, the stratification estimator reduces the bias per covariate by
the factor:

- >2;40) (Xek(h) — Xer()))
= Xk — Xe

where X () (Xx(j)) is the average of k-th covariate of treated (control) group in j-th block, and X, (X..x)
is the average of k-th covariate in the whole treated (control) group.

The key component of stratification methods is how to create the blocks and how to combine the created
blocks.
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_bi# stratification methods B JARYE AL BE T A8 84> BIHEA . AR, FE— LBl By, F52myi—
e Ab PR S B (post-treatment variables R A S) L4555,

fln, BRPFERE B mEY (B4R, w3k Bsn CD4 W EohR SR &, #2
PG

12 W RS A BB 2SR, BFE N B CD4 HH-4UIK T 200cell/mm?® y#F A b3 0595 254 1)
RUORIEXL R AR, EIBLEMEERIN SO < 200 BER M 25 IR 2 S, B MBS 74
(it Wi=1,8% <200} il {j : W; = 0,5 <20}, Heelr S SEAEEH 5 AbFUE, Q015ETA 7RI 145 A
W, AR KRSk

T RRYEXA B, 43 J2HET AL BT 225 RIS AE A MO T2 IBAE DU A B, Rl SOV = w),
RACME w WILFET S MMEME . FEERIN E RIS, S MO0 15 A T 4 MM S, 401 0 AL T30 37 T
DA 3o Bl P AHL 5 SRR A

(Y% Wi = 1,5, (W = 1) = v, 5; (Wi = 0) = 05}

Al
{Y;-Obs : Wj = O,Sj (VVJ = 1) = Ul,Sj (WJ = 0) = UQ},

Forpr o M v AR AEEE . BT R AR B IR (LA T BB IR T ELER A DI ALR AL, TR AT A Ak 2
OB B IR RE . o
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1.8.3 Tree-based methods

6 2r KRR AT 8, R DR REA, FFSEFREAH B PRIIR R &

Bayesian Regression Tree Models for Causal Inference & —Fh G iR, ‘B 455G 7 ULy 5 y2: 00 ] )3
(CANFEMLARAR)  Refili T PRI SR AUN o 3 PR 20 o 515 A BRI 58 0408 vh 1 S VR TR (heterogeneous
treatment effects) /NN K/ (small effect sizes) DA K HH AT WEIU A & 52 A 3 ZUTEVE (strong confounding
by observables) AJIEH o

IX AR 2 Py — AN S0 I A T AR I SR A N Ak B SO I R B, R AEAS WK P AP 3 4k B
(average treatment effects) FIA:-FIIMEER Y. (conditional average treatment effects) A&t
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2 1T HBTw

e An explanatory variable is said to be endogenous if it is correlated with the error term. Endogeneity will
cause OLS estimator to be inconsistent.

b=+ (% lex;> <% in€i>
=, B+ (BOox)) " (B(xie:)) # 3

In the simple regression y; = By + iz + €,

COV/(-Z,/Z\,IL'@) COV(yl QZ'Z) COV(&;, 1’1)
bOLS _ AN U —
' Var(x;) o Var (z;) a Var(z;) 7o
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eInstrumental variable solution. A predetermined variable that is correlated with the endogenous regres-
sor is called an instrumental variable, denoted z;.

Cov(y;, zi) = Cov(fBy + iz + €4, 2i)
= 6,Cov(z;, z;) + Cov(ey, )

—

plv 2 Cov/(yizz') g Cov(yi 2i) - Cov (e, 2) _ 5
Cov(zi,z)  Coviwi z) Cov(x;, z)

if COV(&‘,‘, Zi) =0and COV(JI,‘, Zi) 7& 0.
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e Two-stage least squares.

—Stage 1: Regress z; on z; using OLS, and obtain ;.

T =Y + M1zt wi =T+ w;

—Stage 2: Regress y; on &; using OLS.
Yi = Po + 1 + [ei + Pr(wi — &4)]

—

p2SLS & Cov(ys, 24)
1 - —

Var(z;)
—The second stage regressor satisfies orthogonality condition:
Cov(Zi, & + fr(z; — &) = Cov(y, &) + S1Cov(E;, w;) =0

e The equivalence between b!Vand 3515,
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eSummary of the basic idea.

—Relevance: IV should be correlated with the endogenous explanatory variable.

Cov(z,x) #0

—Exclusion: IV should not appear on the right hand side of the structural equation.

—-Exogeneity (independence): IV should be uncorrelated with the error term.

Cov(z,e) =0
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Simultaneity Bias
Simultaneity Bias arising from equilibrium conditions.

eDemand curve
d
qg; = Qg + a1p; + U;

eSupply curve
¢ = Po + bipi + v;

eMarket equilibrium

oSimplifying assumptions.
E(uz) = E(UZ> = COV(Ui, Ui) =0
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ePrice is endogenous in both demand and supply equations.

N Bo — o Vi — Uy

B ar—p1 ar—

B aifo — b | arv; — P
 a— B ar — 5

Di

i

Var(u;
COV(pi,ui) = —al _( 63
Var(v;)
COV iy Ui) =
(pi, vi) po—)
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eRegressing ¢; on p; (and a constant) does not estimate either the demand curve or the supply curve con-
sistently.

COTi\,Z' Cov iy i
bops — V@) (Pi> 4:)

Var(p;) " Var(p)
oy Var(p;) + Cov(pi, u;) By Var(p;) + Cov(p;, v;)

Var (p;) > Var(p)
B Cov(p;, u;) Cov(p;, v;)
U Nary O V)
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eIn order to consistently estimate (for example) the demand slope, we need to find an IV for p; in the
demand equation, an observable factor that is predetermined w.r.t. the demand curve, but correlated
with p;. A natural candidate is a pure supply shifter.

eSuppose the supply equation can be written as

q; = Po + Bipi + Bozi + (i, COV(Zz', Cz’) =0

and z; does not affect demand,
Cov(z;,u;)) =0

then _—
v _ Cov(gi, z)
Q. = ——
COV(pi, Zi)

58



To see why the IV estimator works in this specific case,

Di

Bo — B2 Gi — u
+ Zi +
041—51 041—51 061—51
a1 8y — B a3 a1 G — B
= + Z +

Oél—ﬁl 01—51 041—51

Cov iy Zi) — Var Zi 0
(i 20) = 2 Var(z) #
Cov(q;, z) = /%2 Var(z;)
Qp — 51

odV Cov(qi, z) _
1 P COV(pZ', Zi)
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Simultaneity Bias arising from reverse causalities.

o “Institutions affect economic performance” .

gi = oo+ ond; +

e“Rich economies choose or can afford better institutions.”

d; = Bo + Brgi + v
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Omitted Variables Bias

e The true model.
y=Po+ prx1 + Baxa+ -+ Brrr +yq + €

e is unobservable. What we estimate is

y =B+ i1 + oo + -+ Brrr +u,u = yqg+e

e Write the linear projection of q onto the observable regressors,
q=200+ 0121+ 0910+ -+ Ogx + v
E(v) =0,Cov(xg,v) =0,k =1,2,--+ | K
y = (Bo+700) + (Br +v01)x1 + (B2 +v02)ze + - - + (Bx + Yok ) + (v +€)

o]t is easy to see
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eSuppose all d;, except i are zero, then

phm bk:ﬁk,k:1,2,"',K—1

n—oo

COV(:EK’ Q)

plim . bx = Bk + Var(zx)

eFor example, zx denotes years of schooling and ¢ denotes unobserved ability. A more able person tends
to have higher wage (v > 0), and is also likely to receive more education (Cov(zg, ¢) > 0), therefore OLS
will overestimate the return on schooling.
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OLS Solution: Find a proxy.

eUse IQ, denoted by z, as a proxy variable for unobserved ability.
q="0p+ 01z +w,Cov(z,w) =0

eQualifications for a valid proxy.

1.Redundancy: z is irrelevant for explaining y once x and ¢ have been controlled for. (For example, we
don’ tneed to control for IQ if ability were observable and hence controlled.)

Cov(z,e) =0

2.The correlation between ¢ and x is zero once z is partialled out.

Cov(x,w) =0

eConsistent OLS estimator with proxy.
y = (Bo+700) + Brz1 + -+ + Brax + 70z + (yw +€)

Cov(x,yw +¢) = 0,Cov(z,yw +¢) =0
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eIncluding a proxy variable can actually reduce asymptotic variances as well as mitigate bias because
Var(yw + ¢) < Var(yq + ¢).

e The second qualification does not sound very intuitive. A necessary but not sufficient condition is that the
proxy variable has to be correlated with the omitted variable. Including an irrelevant variable as proxy
will actually exacerbate the inconsistency of OLS estimator. Sketch of proof: Assume a simple structural
model

y=0+pix+e
where an omitted variable is hidden in «.

Cov(z,¢)

bov —=p 1+ Var(z)
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eSuppose we choose z as a proxy for the omitted variable, and regress y on = and z. In light of FWL, the
coefficient estimate on z is equal to the coefficient estimate on v in the regression of y on v, where v is the
residual of projecting x on 2.
=Ty +m&+0

Yy = (50 + 517'('0) -+ 511} -+ (5 + 5171'12)

Cov(v, e + [1m12) Cov(v,¢)
Var(v) Var(v)

If z is irrelevant, i.e., z is uncorrelated with the omitted variable and hence with ¢.

bproxy —p B+ =01+

Cov(z,e) =0

Cov(z,e) = Cov(v,¢)
Var(z) = 7} Var(z) + Var(v) > Var(v)

‘COV(:C, ) 'COV(U, )
Var(z) Var(v)
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Proxy vs. IV. If we are unable to find a valid proxy (for ability), then we try to find a valid instrument
(for years of schooling). Both a proxy variable and an instrument variable must be redundant (do not
appear in the true model that explicitly contains the omitted variable). However, a proxy is with regard to
the omitted variable, while an IV is with regard to the endogenous explanatory variable. In other words, a
proxy should be highly correlated with the omitted variable, while an IV should be uncorrelated with the
omitted variable. Therefore, a proxy makes a poor IV, and an IV makes a poor proxy.
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Measurement Error

eThe true model
y = Po+ brx1 + Poxa + -+ Prx_1Tkx_1 + Prx + €

eMeasurement error.

*
T =Ty + ek

E(ex) = 0,Cov(zy, ex) = OVk # K,Cov(e,ex) = 0
e The classical errors-in-variables (CEV) assumption.
COV(%’;{, €K> =0

eIn some cases it is clear that the CEV assumption cannot be true.

e What we estimate is
y =B+ i1 + Pora + -+ + BrTk +u,u £ € — Brex

COV(I’K,U) = —5KCOV<£L‘K,€K) = —ﬁKO'gK 7é 0
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e OLS estimators of all 3, are inconsistent.

eThe biases of b, (k # K) are difficult to characterize in general, but plim . bx can be characterized in
any case. Attenuation bias (bias toward zero).

e Write linear projections of z7 and zx onto the other regressors.

T = 00+ 0121 + 0o + -+ + O 1Tx—1 + Tk
T =00+ 0121 + 00T2 + -+ - + 01T 1 + Tk

TK:T;(—FGK

eIn cases where there is a single regressor (/' = 1) measured with error or =} (x k) is uncorrelated with all

other x_g,
Var(ek)
b 11— ——=
= (1 Gare)
. Var(ex) _— . : - .
oSmce\m < 1, the projection coefficient shrinks the structural parameter ~ towards zero. This is called
T

measurement error bias or attenuation bias.

e Again, we shall try to find an instrument for the mismeasured variable.
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Measurement error vs. proxy.The measurement error problem has a statistical structure similar to the
proxy variable problem, but they are conceptually very different. In the proxy variable case, we are look-
ing for a variable that is somehow associated with the omitted variable (unobservable and usually not
well-defined) in order to cope with the endogeneity of other explanatory variables. We cannot estimate
the effect of the omitted variable per se. In the measurement error case, the variable that we do not observe
has a well-defined quantitative meaning but our measure of it may contain error. The mismeasured ex-
planatory variable is the very one whose effect is of primary interest and its own endogeneity is what we
are addressing.

Suppose we are estimating the effect of peer group behavior on individual learning output, where the
behavior of one’ s peer group is self-reported. Self-reporting may be a mismeasure of actual peer group
behavior. Does it cause a problem?
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Repeated measurement solution.

eThe true model
y = Po+ brx1 + Poxa + -+ Prx_1Tkx_1 + Prx + €

eMeasurement error.

*
Tk =T te

Cov(zy,e1) = Cov(e,e1) = Cov(ag,e1) = 0,Vk # K
oOLS estimator is inconsistent.

y = Po+ frar + Paze + -+ - + Prak + (€ — Brer)

e Assume there exists a second mismeasured variable z , that satisfies the same assumptions as z 1,
T2 = x*K + e5

If Cov(ey, ez) = 0 then x5 can be used as an IV for z ;.

B i FAE TR TV

COV(J;K’Q, g — 6[{61) =0
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22 FANMEg DR

o [ OLS fii i Rl
S(8) = B[(Y = X'8)’]

[ = arg mbin S(b)

E[Xe] =0

E[Xe] = E[X (Y — X'B)]
—E[XY]-E[XX'](E[XX]) 'E[XY]
=0

eKey assumption 1 (moment condition): z; is predetermined.

/

E(zie;) = Elzi(y; —x,8)] =0

eKey assumption 2: z; and x; are sufficiently linearly correlated.

eMethod of moments: A method of estimating population moments (expectation of function of random
vectors) with sample analogue (sample mean). OLS estimation is a method of moments.
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o]V estimation as a method of moments.

E(zie;) = E[zi(y; — x;8)] = 0
B(zix;)3 = E(z::)
B = (E(lzix;))_lE(Ziyi)

1w, N\ '/1, —
by = <ﬁ >ic Zixi> <E D ie1 Zi?/i> =(ZX)"'Zy
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ebyy is a consistent estimator of 3 and is asymptotically normally distributed.
oIV estimation applies to just-identified cases only.

eLinear combinations of IVs are still valid IVs. In overidentified cases we can construct K combinations of
all L available IVs to make it just identified. 2SLS offers such a way of construction.

X =Z(2'2)Z'X

basis = (X'X) Xy = (X'X)"'X'y
(X'Z(Z'Z)'Z'X)"'X'2(ZZ)"'Zy

eb,gi s is a consistent estimator of S and is asymptotically normally distributed.

eWhat goes wrong when we do the two stages manually?
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2.3 Forbidden Regression

e Definition: improper use of instruments leads to inconsistency.
—Case 1: Linear projection is incomplete.

—Case 2: Expectation operator does not pass through nonlinear functions (of either the first or the second
stage).

eConsider a model,

Y1 = 2101 + ays + ozzy§ + uq

eThe model is nonlinear in endogenous variables.
=Step 1: yo = 21721 + 222 + vo. Let the predicted value be 9.
—Step 2: run regression y; = 210 + a1 s + a2(92)? + €

o This regression is sometimes called forbidden regression. It is wrong. The reason for this is easy:
E(y*) # (E(y))®

eThe correct method should be:

—Step 1: run two regressions:
Yo = 2191 + 222 + vo. Let the predicted value be 5.
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ys = g(z1, 29) + e. Let the predicted value be 3, and ¢(z1, z3) could be a nonlinear function of z; and z,.
For example:
Yo = 21+ 2amp + 2103 + 250 + 212005 + U
And use the predicted value from this regression.
—Step 2:run 2SLS as in :
Y1 = 210 + onfis + anfiy +e

eDefine a modified 2SLS estimator as 32515 — (X’X)~'X'y where X is an estimator of E(X|Z). Define an
indirect least squares (ILS) estimator as 355 = (X'X)~'Xy.
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24 AXAI

eKey reference: Baum et al. (2007, SJ7-4). “Enhanced Routines for Instrumental Variables/Generalized
Method of Moments Estimation and Testing.”

Testing the relevance of instruments.

eTest the joint significance of the excluded instruments in the first-stage regression. Rule of thumb when
there is only one endogenous regressor: F'stat > 10. F -statistic might be misleading when there are
multiple endogenous regressors.

eStock-Yogo test of weak instruments.

—HO: The set of instruments is weak. (58— BAHRMEAR R, SEAL TR IS8 7T 232 H1MH)

—-Two characterizations of weak instruments:
1.25LS bias can be large, and is in the same direction of OLS bias.

2.25LS leads to size distortion of the joint significance test of the endogenous regressors.

aRIEA e, R 2 2R H K 1R L

—The critical values (and hence the decisions) depend on the largest relative bias or the largest rejection
rate we are willing to tolerate.

-Cragg-Donald iit#: WERTMILFESA (iid) REMRB, @ iHETRBRN N AL ENKE B
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It (F Gt mpfEr B0 MM e tkss . Kleibergen-Paap it &: & HT R4 Z 8 HHRHIRE
458, J& Cragg-Donald %i i8R A .

oIV I RBUBIKIIE . — MBS HITE 3 AN . i 5 A5, RA IAERSg T HAS Bl .
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Testing overidentifying restrictions.

e When we have more instruments than needed to identify an equation, we can test whether the instruments
are valid in the sense that they are uncorrelated with the error term.

eThese are tests of the joint hypotheses of correct model specification and the orthogonality conditions.
Rejection may be either because instruments are not truly exogenous, or because they are incorrectly
excluded from the regression. Moreover, it may be either because the excluded instruments are not good,
or because the predetermined regressors are actually endogenous.

off % | A LHABAY, kANEZREANE, MR >k, MEWEE (moments) MEE LA REM
BEZ. PHITEMad ER AR S-

e The instrumental variables model specifies E[Ze] = 0. Equivalently, since e = Y — X[ this is
E[ZY] - E[ZX'] 8 = 0.

This is an ¢ x 1 vector of restrictions on the moment matrices E[ZY] and E [ZX']. Yetsince  is of dimension
k which is less than / it is not certain if indeed such a (3 exists.

To make things a bit more concrete, suppose there is a single endogenous regressor X,, no X;, and two
instruments Z; and Z,. Then the model specifies that

E ([Zly] =E [ZlXQ] B
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and
E[ZY] = E[Z:X,] 5.

Thus 3 solves both equations. This is rather special.
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eFor a general overidentification test the null and alternative hypotheses are H : E[Ze] = 0 against H; :
E[Ze] # 0. We will also add the conditional homoskedasticity assumption

E[e?| Z] = o

it is best to take a GMM approach. To implement a test of Hj, consider a linear regression of the error e
on the instruments Z
e=Za+v

with a = (E[ZZ'])"' E[Ze]. We can rewrite Hj as o = 0. While e is not observed we can replace it with
the 2SLS residual ¢; and estimate a by least squares regression, e.g. @ = (Z'Z)”' Z'e. Sargan (1958)
proposed testing Hj, via a score test, which equals

€Z(27Z)"ze

52

S =a'(var[a]) a = =

where 57 = 1€’€. Basmann (1960) independently proposed a Wald statistic for Hy, which is S with 52
replaced with 2 = n~'0’0 where © = € — Za. By the equivalence of homoskedastic score and Wald tests
(see Section 9.16) Basmann’s statistic is a monotonic function of Sargan’s statistic and hence they yield

equivalent tests. Sargan’s version is more typically reported.

The Sargan test rejects H in favor of H, if S > ¢ for some critical value c. An asymptotic test sets c as the
1 — « quantile of the x7_, distribution. This is justified by the asymptotic null distribution of S which we
now derive.
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eHansen’ s] (Sargan) test.
Sn —d X2(l — ]{3)
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e Testing a subset of overidentifying restrictions: Hayashi’ s C (difference- in-Sargan) test.

o Ly NMERATAF{E S ¢ AR, WMimsh L MBI, WRMA L MERRBEERE 5., B4
FA B R BRI L R« BRI CHY

eSuppose we can divide the L instruments into two groups: L, variables that are known to satisfy the
moment conditions, and L, variables that are suspect. The moment conditions regarding L, are testable
if L1 > K. The idea is to compare two S,, from two separate GMM estimators of the same regression, one
using only L; instruments, and the other using a full set of L instruments. If the inclusion of L, suspect

instruments significantly increases 5, that is a good reason for doubting the predeterminedness of the
Lo instruments.

CéS—Sl—m)f(L—Ll)
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olf the unrestricted equation is exactly identified, the J statistic for the unrestricted equation will be zero
and the C statistic will coincide with the J statistic for the original (restricted) equation, and this will be
true irrespective of the instruments used to identify the unrestricted estimation. Therefore the overiden-
tification test is an test for the failure of any of the instruments to satisfy the orthogonality conditions, but
at the same time requires that the investigator believe that at least some of the instruments are valid.

eEven if partially testable, the exogeneity of instruments has to be justified mainly from a theoretical
ground.
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Testing for endogeneity of the regressors.
oHO: The regressors of interest are exogenous.

eHayashi’ s C test.

Indirect test of the exclusion restriction. In samples where the first stage is zero, the reduced
form should be zero as well. On the other hand, a statistically significant reduced-form estimate with no
evidence of a corresponding first stage is cause for worry, because this suggests some channel other than the
treatment variable links instruments with outcomes. We can construct “no-first-stage samples” and check
whether they generate no evidence of significant reduced-form effects (Angrist and Pischke, 2014).
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TABLE 7—REDUCED FORM RELATIONSHIP BETWEEN THE DISTANCE FROM THE COAST
AND TRUST WITHIN AFRICA AND ASIA

Trust of local government council

Afrobarometer sample Asiabarometer sample
(1) (2) (3) (4)
Distance from the coast 0.00039**%  (0.00031%** —0.00001 0.00001
(0.00009) (0.00008) (0.00010) (0.00009)

Country fixed effects Yes Yes Yes Yes
Individual controls No Yes No Yes
Number of observations 19,913 19,913 5,409 5,409
Number of clusters 185 185 62 62
R? 0.16 0.18 0.19 0.22

Notes: The table reports OLS estimates. The unit of observation is an individual. The depen-
dent variable in the Asiabarometer sample is the respondent’s answer to the question: “How
much do you trust your local government?” The categories for the answers are the same in
the Asiabarometer as in the Afrobarometer. Standard errors are clustered at the ethnicity level
in the Afrobarometer regressions and at the location (city) level in the Asiabarometer and the
WVS samples. The individual controls are for age, age squared, a gender indicator, education
fixed effects, and religion fixed effects.
*** Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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TABLE 8—REDUCED FORM RELATIONSHIP BETWEEN THE DISTANCE FROM THE COAST
AND TRUST WITHIN AND OUTSIDE OF AFRICA

Intergroup trust

Afrobarometer sample WYVS non-Africa sample WYVS Nigeria
(1) (2) (3) (4) (5)
Distance from the coast 0.00039#*:*%  (0.00037#:** —0.00020 —0.00019 0.00054**
(0.00013) (0.00012) (0.00014) (0.00012) (0.00010)
Country fixed effects Yes Yes Yes Yes n/a
Individual controls No Yes No Yes Yes
Number of observations 19,970 19,970 10,308 10,308 974
Number of clusters 185 185 107 107 16
R? 0.09 0.10 0.09 0.11 0.06

Notes : The table reports OLS estimates. The unit of observation is an individual. The dependent variable in the
WVS sample is the respondent’s answer to the question: “How much do you trust <nationality> people in gen-
eral?” The categories for the respondent’s answers are: “not at all,” “not very much,” “neither trust nor distrust,”
“a little,” and “completely.” The responses take on the values 0, 1, 1.5, 2, and 3. Standard errors are clustered at the
ethnicity level in the Afrobarometer regressions and at the location (city) level in the Asiabarometer and the WVS
samples. The individual controls are for age, age squared, a gender indicator, an indicator for living in an urban
location, and occupation fixed effects.
**%Significant at the 1 percent level.
*#*Significant at the 5 percent level.
*Significant at the 10 percent level.
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Falsification test of plausibly endogenous IV.
eKey reference: Conley et al. (2012, REStat).
y=Xpf+Zy+e¢
X=ZII+V
B=(2'X)"2'Y -, B+~/1

There is typically a trade-off between instrument strength and degree of violation of the exclusion re-
striction.

o SR
~ B RATANE 7 M9 HE G, By ATAENUELOO RS . 1, FATATAEINR + 46— IKIH [—o,0] .
—HEF G S ANTAEN) 7 50, RATATTDAMETHIE (1) MR, IFRE-ART 8 MERIKH.

(Y = Zy)=Xf+e¢ (1)

Estimate $ and construct a symmetric (1 — a) confidence interval in the usual way:

—

~ ~

CI(1 - a,v) = [B(70) £ 21-a/25E(B(10))]
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—HI B vo, WATATLAA G iy fE— ] REAELERAS 2] — X AR A BLAS X

CI<1 - Oé) = U'yoGFC[(l - 05770>

o X P I IEMIL R BEA TN v B i 58 m RS, NG EANE + BCReR. R, XMk —A4
BRARARE MBS X TRERARTE, PUOABAERTA AT REAITR UL T #REORIEAM B S22, BISIRLLH ST T
REAA AN KT RE TR Do

oMk E (B): WIRERERME —ART v MRBBRS A XA R T HF5EEN - W REHRE FAS
&o B, WERBIZEEIANA v ARATREREGE 0, ARAAE O Ffam AME RLZA SR R SE BlER . R THHEEEA v
XERLHY 5 R EAE XN, PR B AR X AR 1o SERBERBEAT AL, FHFBORE.

ot —p itk (C):
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e local-to-zero approximation (JHEZ|E).

oy WK —ANBENLA B, FE HAGREARK/N N BB SR v = n/VN, n REIRAEA S AR & . X
PBCE AVE N ERTIE5 R, v BT 0.

o FIFI B3R BLAE, WIDAHMES: 2SLS /) 8 7 v MBI RANE M A . XSRS T WIS —H a2 R5m
2SLS Wi o3At , 5 —HR oL ST v ANB A M A S o

o N TR, CEHFE B v IRNIEES . X, 5 B4R n] LER N IEZA 404 Suppose
n~ N(u Q)

B=(X'P;X)"'X'Pyy
= (X'P;X) ' X'Py(XB+ Zvy+e¢)

B=(X'PzX)"'X'Pyy+ (X'P;X) "' X'Pge

B~ N(B+ Ap, Var(B) + AQA") (4)

where A = (X'P;X)'X'Z.

estata fif4: plausexog
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ol EZEAEN ELHSi3L (Dincecco and Prado, 2012, JEG) .
-log (Y;/L;) = a+ BF; +v'Xi + ¢
—Fy = A+ (Wi + 6% + v;
—log (Yi/Li): N¥r=ihs Fi: WBRES); Wi 4P 05 A B A RTI4TN %L
—[i: IV A HERR AR B A7 5 o
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long live Keju:

T I AR IR G ) WNERANREAR CPHZHEER) K. WAMERE:
ZERTRE SR R (s Sefbfest) M, S8 OLS it fiz.

TRARER: SRR R (bprvdist).
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6.2 Sensitivity analysis

To test the plausibility of our exogeneity assumption even further, we now perform a sen-
sitivity analysis. This analysis evaluates the extent to which our key results regarding the

3 Asan alternative, we used the binary variable for historical colonial status from Comin et al. (2010). The
key results did not change. Although it would also be worthwhile to use settler mortality rates from Acemoglu
etal. (2001) to instrument for current property rights institutions, severe data limitations prevented this exercise
(there are only 36 observations that overlap between Acemoglu et al.’s dataset and ours).

33 We re-ran our benchmark 1V specification using the same 44 observations as for the trust variable. The
2SLS estimate was 3.39 and is significant. As an alternative, we also constructed another control that measured
the level of trust that individuals have for people of other nationalities (only 41 observations were available
for this variable). The key results were unchanged.

@ Springer

196 J Econ Growth (2012) 17:171-203

positive performance effect of greater fiscal capacity can withstand violations of the exclu-
sion restriction. We find that these results are indeed robust to moderate violations.

Recall from Sect. 5 that our exclusion restriction is that W; in Eq. 2 does not appear in
Eq 1. Following Conley et al. (2012), the sensitivity analysis instead assumes that W; does
in fact appear in Eq. 1:

log(Yi/Li) =a+ BF; +y'Xi+nW; +¢. (3)

To test how much of a violation of the exclusion restriction could exist before the positive
effect of greater fiscal capacity on performance is no longer significant, we consider the
following equation

log(¥i/Li) —nW; =« + BF + y'Xi + &, 4)

where we allow 7 to take values other than zero.
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Our inference strategy, which we base on Beber (2009) and Conley et al. (2012), makes
the a priori assumption that i is normally distributed with mean zero and variance 0,12. We
test many values of the standard deviation oy, which we vary systematically from O to 1 at 0.1
intervals. For each oy, we draw 10,000 5 values from N0, 65‘). The final output generates
the percentage of 95% confidence intervals for our coefficient of interest 8 which are always
positive.

Table 8 shows the results of the sensitivity analysis. Panel A reproduces the key findings
from the eight 2SLS specifications in Table 5. The first row displays the coefficients for the
second-stage relationships of fiscal capacity on economic performance, and the second row
the coefficients for the first-stage relationships of past war casualties on fiscal capacity. Panel
B shows the percentage of confidence intervals for g which are always positive. The first row
of this panel replicates the benchmark 2SLS specification from column 1 of Table 5, where
we assume that the exclusion restriction is met exactly and n = 0. In this case, all confidence
intervals for # will always be positive. The second row increases o, to 0.1. The percentage of
confidence intervals for 8 which are always positive remains 100 % of the time for most spec-
ifications. Moreover, for the three specifications for which this percentage falls below 100
(i.e.. columns, 3, 6, and 8), itis still very high, ranging from 77 to 98 % of the time. Although
the percentage of confidence intervals for 8 which are always positive gradually falls as we
further increase oy, it always includes the majority (and sometimes, the vast majority) of
specifications. For the case of o, = 1, the percentage of confidence intervals for g which are
always positive always exceeds 60 % of the time, excluding the three specifications described
above. For these cases, this percentage still occurs the majority of the time.

Summarizing, the sensitivity analysis indicates that our key results are robust to moderate
violations of the exclusion restriction. While we still cannot completely exclude endogeneity
concerns, this analysis thus provides further support for the plausibility of our IV approach.

BAR IV Al — @2 L3 R T exclusion restriction, {Hj& FXFY H 7= 4 1E 2l 8 R ol G 2 77
TEH
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Table 8 Sensitivity analysis

(1) (2) (3) 4) (5) (6) (7) (8)
Panel A: 25LS regressions from Table 5
Fiscal capacily on  4.98%%% 4 44%8F  gogqred 4306k g 3kek 4 o4k 7 310 1.81%%*

performance (1.16) (1.19) (1.36) (1.31) (1.32) (1.70) (1.85) (0.62)
War casualties on  0.16™  0,15%% 0,14 Q,15% 017" 012" 0. 11%* 0.16%**
Fiscal capacity (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.03) (0.05)

Latitude Yes Yes
Democracy Yes Yes
Government size Yes Yes
Trade openness Yes Yes
Area Yes Yes Yes Yes Yes Yes Yes Yes
Continents Yes Yes Yes Yes Yes Yes Yes Yes
Panel B: percentage of confidence intervals over which B is always positive
T
0.0 100 100 100 100 100 100 100 100
0.1 100 100 98 100 100 77 100 81
0.2 99 93 84 93 99 64 97 68
0.3 93 84 74 84 93 61 90 62
0.4 86 78 68 71 86 57 83 59
0.5 81 72 65 72 81 56 78 58
0.6 71 68 63 68 71 54 75 56
0.7 74 67 62 67 73 54 71 56
0.8 70 64 60 64 71 54 69 55
0.9 69 63 58 64 69 53 66 54
1.0 67 62 58 63 67 53 65 53

See Table 5 for details

##* Significant at 1 %; ** significant at 5 %; * significant at 10 %
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Two important options in ivreg2.
e Two-way clustering: cluster(varnamel varname2).

ePartialling out some exogenous regressors: partial, especially useful when using cluster() and the num-
ber of clusters is less than L, or when requesting a robust covariance matrix and the regressors include
dummies.

stata help:
Partialling-out exogenous regressors

The partial(varlist) option requests that the exogenous regressors in varlist are partialled-out from all
other variables (other regressors and excluded instruments) in the estimation. If the equation includes a
constant, it is also automatically partialled out as well. The coefficients corresponding to the regressors
in varlist are not calculated. By the Frisch-Waugh-Lovell (FWL) theorem in IV, two-step GMM and LIML
estimation the coefficients for the remaining regressors are the same as those that would be obtained if
the variables were not partialled out. (NB: this does not hold for CUE or GMM iterated more than two
steps.) The partial() option is most useful when using cluster() and fclusters < (fexogenous regressors
+ 1 excluded instruments). In these circumstances, the covariance matrix of orthogonality conditions
S is not of full rank, and efficient GMM and overidentification tests are infeasible since the optimal
weighting matrix W = S~! cannot be calculated. The problem can be addressed by using partial() to
partial out enough exogenous regressors for S to have full rank.

A similar problem arises when the regressors include a variable that is a singleton dummyj, i.e., a
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variable with one 1 and N-1 zeros or vice versa, if a robust-covariance matrix is requested. The singleton
dummy causes the robust covariance matrix estimator to be less than full rank. Here partialling-out the
variable with the singleton dummy solves the problem. Specifying partial (_cons) will cause just the constant
to be partialled-out, i.e., the equation will be estimated in deviations-from-means form. When ivreg? is
invoked with partial(), it reports test statistics with the same small-sample adjustments as if estimating
without partial (). After estimation using the partial() option, the postestimation predict can be used only
to generate residuals, and that in the current implementation, partial() is not compatible with endogenous
variables or instruments (included or excluded) that use time-series operators.
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AR A B THlE IV?
o MR A u Hil v FIFE

o] li: AW —AM o RBHXHENEE. BARARBEEELN, MEEAEEM vy (%2 exclusion
restriction) » XM BRI IV 47

eMonte-Carlo experiment: Draw u and v from multivariate standard normal distribution with correlation
561 :5752 =1 = "2 = 1.
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Mean b_ols=5.249

Mean b_iv=4.998

Mean b_iv({fake)=5.246

4.5
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distance between b_iv(fake) and true beta

. . . .8
significane of correlation between fake iv and structural error
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What should we do in practice?
eReport the first stage result and think about whether it (magnitude and sign) makes sense.
eReport the reduced-form regression of the dependent variable on instruments.
ePick your best single instrument and report just-identified estimates.
eCheck over-identified 25LS and GMM estimates. Worry if they are very different.

eCarry out specification tests.
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o 5 il
1.Quarter of birth and schooling (Angrist and Krueger, 1991, QJE).
2.Economic shocks and civil conflict (Miguel et al., 2004, JPE).
3.Family business succession (Bennedsen et al., 2007, QJE).
4.Colonial origins of comparative development (Acemoglu et al., 2001, AER).
5.Tiebout choice in public education (Hoxby, 2000, AER).
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2.5 LATE

eWald estimator: IV estimator with a binary instrument Z for a binary regressor D.
oY =DfB+a+e Z ATHZRE, El|Z] =0,
eTake expectations of the structural equation given Z = 1 and Z = 0, respectively. We obtain

E[Y | Z =1]
E[Y | Z = 0]

E[D|Z=18+a
E[D | Z =03 + .

eSubtracting and dividing we obtain an expression for the slope coefficient:

CE[Y | Z=1-E[Y|Z=0

P =R Z=1-BD[Z=0

(5)

It shows that the structural slope coefficient is the expected change in Y due to changing the instrument
divided by the expected change in X due to changing the instrument. Informally, it is the change in YV’

(due to Z) over the change in X (due to Z).

eThe natural moment estimator replaces the expectations by the averages within the “grouped data” where
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Z; = 1and Z; = 0, respectively. That is, define the group means

Voo i ZiYs o i (12Z)Yi
N=s o= ey

O Z?;lZiDi A 21 (1=Z)D;y
Dl - ?i1 Zi DO - Z?i1(1*Zi)
The moment estimator: _ _
~ Y1-Y
Dy — Dy

It shows that the slope coefficient can be estimated by a the ratio of a difference in means. T #ER] b
AT IV it
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orthogonality :

BN TA:

> (Vi D — ) — 0

i=1

32 (¥~ Dfh — ) =0
i=1

zn:zi((yi—?) . (Di—D)'BiV> —0

ZZi (D; - D)’) ; (i Zi (Y; - ?))
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Notice:
Y-V =Y - (ZZYmL 21— ) (1-2) ("1 - Yp)

and similarly
Dl—D:(l—Z)(Dl Do)

and hence _
- _(-2)M-Y) -

YT (1= 2) (D, — Do)
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)

1 0
v - ¥P)

eHeterogeneous treatment effect 2 EH£?
V=Y =EY' -Y")+ (V' -Y - E(
=U;

N
g

Y =Y'+ (¥ -¥)D

=Y+ (B+U)D
=BD+ (Y°+UD)

—— kP, Cov(Z,UD) #0, WA Cov(Z,D)#0,kxdE U HEM T (Z,D).

—(HiX—BEA AR, FHR U & treatment effect f—#EB43 o
- B 0 IV AR BV - Y0) St
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o R4, IV fliit B RAG T B2AT A7

% X potential treatment
Storage type Bytes
Compliers (C') D=1whenz=1and D =0whenz =0
Defiers (D) D=0whenz=1and D =1whenz =0

Always-takers (4) D = 1regardless of the value of z
Never-takers (N) D = 0 regardless of the value of =

Imbens and Angrist (1994) ¥EBH, #
1.P(D=1|Z =1) # P(D =1|Z =0) : f#4£ compliers
2.D} > DY Vi: RAFAE defiers
3.(Y°, Y, D%, DY) L Z
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Sp)

i

E Y]Z 1) —

E
E
E
E
E
E

(
(
(D
(D'
(
(
(

DYy

(D!
Yl
Yl

E(Y|Z =0)

(1 DY Z=1)—- E(DY" +

(1-D)Y°|Z =0)

+(1-DHY°Z=1)- ED°’Y'+ (1 -D"Y°|Z =0)

+(1—-DHY?) — E(D°Y! + (1 —

DO)(Y1 )
YOID' — D° =1)P(D' - D° =

Y?|compliers) P(compliers)

D°)Y?)

1)

D'— D" =1<+= D'=1,D" = 0(compliers)

E(D|Z =1) - E(D|Z = 0)

P(always-takers or compliers) —

P(compliers)
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P(D=1/Z=1)- P(D=1|Z = 0)
(
(

P(always-takers)



5]

(Y|Z=1) - E(Y|Z = 0)

E
E(Y' — Y°|compliers) = B

(D|Z =1)— E(D|Z = 0)
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Intuition of LATE

Observable:
D=1D=0
Z =1 ni nio
Z =0 nyn | ny
Unobservable (it & 174 defiers):
/Z =0
7 -1 D = 0‘ Never-taker (n¢, nl) Defier

D = 1‘ Complier (n., n¢) |Always-taker (n%, n%)
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7 _1 Complier (nl)

= 0
=1 Always-taker (12 Never-taker (n9)

Complier (n¢)

B ) 0
Z =0 Always-taker (ng) | e taker ()

Fk Z EREALE), L Z = 0/1 subset i HMREEAE il

No1 n1o
Ng=—7"7T""Np= """
No1 + Noo n11 + Nio
N11Moo — N10No1
(n11 + n1o)(no1 + Noo)

n1o

ne=1—n,—n, =

n
nt = —2A4 . (N1 + nao), nyy, =

= =——-— (N +n
a (o1 00)
No1 + Moo n11 + N1o

n11Mpo — N1oNo1

No1 + Noo
N11Mpo — N1oNo1

t __ U __
ne=mny —n, =

c __ U __
n,="mnop — N, =
ni1 + Nio
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Z=0Z=1
Always-taker 5 y
ng ni
: Z =0 Z =1
Complier . .
nC nC
Z=0|Z=1
Never-taker y o
nn nn

o LATE J&%F compliers: n¢ + n'.

e ATT J& % T always-takers Fil a subset of compliers: n¢ + n¥ + nf.

o n° BN, MPANARTFEAE always-takers, JLBf ATT J&2%F nf, XK Z random assignment, K it LATE
B ATT,

eFirst stage tA & complier Wb, £FHK complier B}, first-stage=1.
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o il Adams et al. (2009, Journal of Empirical Finance).
=Y : AHES3%% (Tobin’ s Q and ROA)
-D: CEO & AR Al A
~"Eligibility” IV: fl4& NFET-Lefl; G4k AL
—Method: Probit and ILS
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E(Y|Z=1D=1)=—"%¢

EY! li
o (Y |complier)

4 la E(Y'|always-taker)
Ne + Ng

E(Y|Z =0,D = 1) = E(Y"'|always-taker)

E(Y|Z=0,D=0)= Z
nC nTL
Ny,

+ —"— E(Y°never-taker)
Ne + Ny,

E(Y°|complier)

E(Y|Z =1,D = 0) = E(Y"|never-taker)
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We can compare
E(Y'|complier)vs. E(Y'|always-taker)

and
E(Y?|complier)vs. E(Y°never-taker)

If there is little difference, it is plausible that the average effect for compliers is indicative of average effects
for other compliance types.
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2.6 —EMEIVE) “E3
2,61 EFAMEE TR LT E
LONG LIVE KEJU! THE PERSISTENT EFFECTS OF CHINA’ S CIVIL EXAMINATION SYSTEM, EJ2020

H s s BRI (keju) X HARNT BEA SR R Ao [ 50 AR5 1A rp B S By 3 [X
(DABIE kL (jinshi) BIB5EOARER) 55 RUMA DK FHZEEERABEMIEMRR R SN
—ANHEL: (810,000 N) 5 2010 4P & 4RGN 8.5% 475

THAE: BN AT R Rl AR AT 105 )3 1 A T 37 P
R AR AT R IUELF, X AT AB -5 AR A4 A 2] 45 FE A0 EQ Il 55 U A R ) B DIRE 5% 5

o UK 19 AE kil v Co sy AR AR v [ B 278 AN A, 3 e o 7 BARANTS AR 18] Hh A i 45 48 o5 21 7 B R 5
FE0 80%. PBL, —AMFREABARITEN I FFEHIXMER R L, W AR 5 AR RSl A R

1 3 B2 EQ ) e O FARA AT 106 S I P, EL B 5 8 JORE 2 28 il 32 ZERT AT il s . Rk,
— AN RF B 30 B R AR ARG S b TR B B, m) DA — AN B B TR BRI -5
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P YN RE

The telegraph and modern banking development, 1881-1936, JFE2021

19 R, WREARP GNP E, T TEEBBRARERIT AR E . T — MM 1881 £ 5
1936 4F-1H] 287 A~ BAL Y LR RANERAT A BB . A OLS (ilide/h —3R3%) A1V (TRAAR)
T EARAE TV HOS BUAT A SR E I . EZURBL: RSB Y R T 8T 0 ST B s BE T e o

THER: RUHEHBNUEEFANEREMRASE TS ~MHXERHX MO EERR TS
(HMTN) i, W DAEA—A5 ST KT BRI T RAR B R, 1535 W I 178 o I 21 6
20 AN FEFHLL, FFNTEBU/MNEBORA SRR RN ERR iR T4 (HMIN) . Z MR TRERT
i T K SRR S T30 A S o
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Q3. Songjiang
(Shanghai)

.

Telegraph lines in 1896
MSTN —_—
Number of telegraph stations in 1896 v 12 s 34 ® 5-10 ® 10+

Fig. A.2. Alternative hypothetical telegraph trunk: minimum spanning tree network.

The minimum spanning tree network (MSTN) is constructed based on the minimum construction cost of the entire
telegraph trunk system. We first calculate the least cost bilateral path between each pair of military centers, and
then calculate the MSTN of the entire trunk based on the greedy algorithm method (Kruskal, 1956). The nodes
(military centers) are the same as those in Fig. 2. The map covers 287 sample prefectures in China proper.
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5 S MR AR B E R E R T M4 (Hypothetical Military Telegraph Network, HMTN) Fiif /s Az B s
M4 (Minimum Spanning Tree Network, MSTN) ##atid 2

HMTN F#g 8 :
o HMTN 2T B 21 AFE o By AL 22 5 1) doe /N S B AS T S 1Y o

o 4 T VB AR LBt BN RS, PS5 4 R 73K Shuttle Radar Topography Mission (SRTM) Ay
B (BERRR) Fkcls B

o FIF ArcGIS &, BHRMALRAE 1km x 1km B RIA%BTTH G, FEA WM BT B R AC T T [ I
HEVUEA R Bt FAR

o S A B 1 S B R OR AV SEPIA F grbO 2 TH] B B /N AR BS A, A R BRUBCAC MRS A0 5 170 52 16 R A A

o X T4y R MLy, F RABAHIS T 1R T BRI AR A E AR A (Bt 20 DL BN B
Ak, B8 20 KR/NEARKE.

ol ER IR, FPTAFEFOAERSE 210 FR/DERARE (21 x20/2), K5k 1896 SELFRH
Lk e e B i A8 HMTNG
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MSTN [y % :

o MISTN AR 337 W BUAT I [&] doe /N AL HE A VLI o) 48 S TS0 A, 58 T /IS 22 S 92 2l T e 28 5 ) WL AT
o 2%

o5, HWHERMERWANFESEH.OMER BB RRE N E/MNEREARRKE, Jiks HMIN fiF, HizR
P A R R 00 o /1N JB AR B8 A ) S TR

off FZT L HI% (Kruskal, 1956) ik 21 AN Hrpuly (R) BB RDNEAME . ZITEN— 1
RITR, WHENZY K2 A HA T RN, FFAFA T RER R

o BT R R AL 2 AR . ARSI TR, RKE-AATLLRAFATL-T N e F A 5 LAY WL IR e B
WAL R, BIA i A e B

o fEVHH MSTN W, IR4FIX AT ER R iy S/ N BORA R 2, [ I SRt 42 i B9 MSTN
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2.6.2 T egAE ik

Lipscomb, Molly, A. Mushfiq Mobarak, and Tania Barham. 2013. “Development Effects of Electrification:
Evidence from the Topographic Placement of Hydropower Plants in Brazil.” American Economic Journal:
Applied Economics, 5 (2): 200-231.

SCEERT T 1960 482 2000 4E51 1], B HLSARXS S R ARSI TS IR EL G By L) I 48 F, a0
B 7 TR A R B BRI PO BN R SR AR . AR RN T RAR R (IV) JiikRkide 1960 4%
2000 45 ] B AR S 90 % Fe B 52 o

Ey 2
o WAALREIR MF7 g 2B FE R MM & 8V,
RACKT R R I REWAAE OLS rhp (kA
o AKX B E A A B AR R RIS B IETH — .
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A PRI : R SAE B PRI P RE 55 4 X R K P 2 A A AH LR B

o B HARFIHLRALE ST . BUR W REREE T BOA Bkt & B, KB/ AL H BER TheE X, JUHZRL
LEUT I Ja BTG SRR X o IR B SRR T RE A XOR FRAH ORI, HLRALTR R ARXT SR IR T R,
fE AT AR R B AH B R R R X Lt 5

o AL BT RN PR BLRE AL i AL 2 e J s W AAR I AT RERI N DV R 8 B4 2k P A I AT i
SRR

o B[ PRIIR : H Xk J v R A ik HL <K

T RASRA R A LT B A R 3 B HL ) R 54 SOR T LAk, AT 2% X 2 HL AR
JRE By BELIE] R SRBOR o GX P 5 AR B Ml B B AR R 3R AR B, AN 32l X R KPR RS, BRI LRI DAY R AR
THAZE.
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#)32 id42: Our instrument (Z ) is a prediction on electricity availability at each grid point in each
decade, based on a model that simulates the evolution of generation plants and transmission lines in a way
that minimizes construction cost. The model takes as inputs data on the geographic characteristics of each
location and the national bud- get for each decade, and produces predictions for whether each of the 33,342
evenly spaced grid points has electricity access in each of the 5 time periods of data between 1960 and 2000.
The geographic data are matched to existing hydropower dam data by 12 km buffer zones around each grid
point.

QPSR BLAN PO B T R PRACE 18, TG ) FL g D 8 A s 2 -
L WA TR E R, Rk 28 K s o -

2. ARG ELALE M HOBRAE (WK T30 BERIE idh 3t XA AL X B T A2 Y I Bl kAT HE
%, VAR R BB B o

o FESE — AT, M B A Jo R Y R UK 1 S ORI, ERITUE (RS —2 it i) M sE.
BT — A4, HER DR AR BTN 2043 W) 8 PR mCRR oKL, BRI 224 i B X

3. A P A S5 /MU IR A e A PR B A SRy, T KK L R L R
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] AR A -
}/;t = Oéi + 71‘/1 + /BEC,(t—l) + €ct,

where F is instrumented electricity provision, predicted on the basis of our model forecasting the expansion
of electricity in the first stage:
Ec-1) = 043 + ’Ytl +0Zc 1—1) + et

Ee RN ¢ 5 o il s RSB Bl o Zo Re—ANTRIIME, FoRARIEIEE BBy, BN i e R A
% AR AR ORSAR Rl

HU PR J5 48, TR TE H IR 4% A K Je T R 1 B AE K HL Sl 18 e 1B BRY LA TN 58 o
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Ve 1838 T HAS B AT R
In order for the instrument to be valid in a time and county fixed effects IV model, the demand side
(people or firms) must not move independently over time along the same spatial lines as the forecasted

placement of the electricity network within a county from the lowest cost locations (robust water flow
with a steep river gradient) in the early decades to slightly more expensive (flatter and less water-rich)
locations in later years. We build confidence in the validity of the instrument by presenting evidence that
the expansion of settlements followed a different spatial pattern than modeled electricity provision, and that
the results remain robust to limiting the source of identification of the instrument. At the extreme, we rely
solely on the nonlinearities and discontinuities built in to the forecasting model through decade budgets,

and exclude the direct effects of the geographic variables.

It is possible that due to water scarcity- the population moved to new counties based on water availabil-
ity during our period of analysis, leading settlement of counties in Brazil to independently follow the same
pattern as electricity grid expansion. While this seems unlikely since Brazil has 13 percent of the world’s
freshwater resources, and all inhabited land is well covered by a dense network of small rivers and ground-
water (Lipscomb and Mobarak 2011), we use census population data for 1910 onward to examine whether
Brazil’s counties were settled before the start of the analysis in 1960 (see online Appendix Figure A7). At
a low-population density cutoff of 0.5/sq-km,15 all counties in Brazil were already settled by the starting
period of our analysis, except for some counties in the Amazon. Even at a high-population density cutoff of
5/sq-km, only 23 out of 2,184 counties are settled for the first time during the analysis period of 1960-2000.
Water scarcity is therefore unlikely to drive population movements and settlement patterns directly during
the period of analysis.
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Figure A7: Evolution of population settlements across Brazil

Source: Authors’ calculations
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Another way to directly examine the question of whether people and/or firms move independently over
time in the same spatial pattern as our forecast of electricity grid expansion, is to create a rank ordering of
locations predicted to have the highest population density or highest GDP, using the same method we use to
predict the most suitable locations for dam construction. To do so, we regress population density and GDP
per capita on the same geographic characteristics as those used in the electricity forecasting model: water
flow, river gradient, and Amazon. We then rank-order the points predicted to have the highest population
and GDP by those regressions. We examine the Spearman rank order correlation between the suitability
rank for hydropower generation and the suitability rank for population density in Table 4A and the correla-
tion between hydropower suitability and GDP in Table 4B. We find that for each one of the five major regions
of Brazil, the rank order correlation for population and hydropower suitability is low, and varies between
-0.03 to +0.06. This is a conservative test of our identification assumptions, since this region fixed effects
analysis is much less stringent than the county fixed effects we employ in all our regressions. The rank or-
der correlations for GDP per capita rank and hydropower suitability rank for the typical region-decade is
also very close to zero, and ranges from —0.06 to +0.1().

Another way to directly examine the validity of the instrument is to examine whether the placement
of power plants simulated by the forecasting model can be predicted by development indicators in earlier
years. Results in Table 5 show that the point estimates on decade-lagged values of development indicators
that serve as our main outcome variables of interest (housing values and county HDI) are close to zero and
statistically insignificant. This suggests that at least lagged development indicators do not predict the spa-
tial allocation of hydropower dams and transmission lines, and provides some confidence that the model’s
simulation of cost-minimizing electrification is orthogonal to demand side factors.
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TABLE 4A—SPEARMAN CORRELATIONS—HYDROPOWER SUITABILITY AND POPULATION DENSITY

Year
Region 1960s 1970s 1980s 1990s 2000s
Amazon +0.0369  +0.0368  +0.0354 +0.0594 +0.0432
North East (including Bahia, Ceara, etc.) —0.0298  —0.0290  —0.0341 —0.0321 —0.0349
Central West (including Pantanal) +0.0217  4+0.0172  40.0141 +0.0442 +0.0375
South East (including Minas Gerais, +0.0070  +0.0124  —0.0019 —0.0247 —0.0318
Rio de Janeiro, Sao Paulo)
South (including Parana, Rio Grande do Sul) +0.0486  +0.0447  40.0506 +0.0532 +0.0631

Note: Each cell presents the Spearman rank order correlation between the suitability rank for hydropower genera-

tion and the rank for population density, by region and decade.

TABLE 4B—SPEARMAN CORRELATIONS—HYDROPOWER SUITABILITY AND GDP

Year
Region 1960s 1970s 1980s 1990s 2000s
Amazon +0.0714 +0.0082 +0.0557 +0.0700 +0.0679
North East (including Bahia, Ceara, etc.) +0.0098 +0.0127 +0.0259 +0.0968 +0.0689
Central West (including Pantanal) +0.0067 —0.0155 +0.0141 —0.0078 —0.0138
South East (including Minas Gerais, —0.0557 —0.0631 —0.0554 —0.0826 —0.0603
Rio de Janeiro, Sao Paulo)
South (including Parana, Rio Grande do Sul) +0.0031 —0.0043 —0.0237 —0.0104 +0.0238

Note: Each cell presents the Spearman rank order correlation between the suitability rank for hydropower genera-

tion and the rank for GDP, by region and decade.
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TABLE 5—R0OBUSTNESS CHECK FOR REVERSE CAUSALITY

Instrument for electricity infrastructure

Lagged housing value 0.000
(0.00)
Lagged county HDI —0.045
(0.04)
R? 0.984 0.984
Observations 6,549 6,549

Note: Standard errors clustered by county in parentheses. All regressions have county size
weights and year dummies.
*#% Significant at the 1 percent level.
** Significant at the 5 percent level.
*Significant at the 10 percent level.
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Following the forecasting method proposed by Lipscomb, Mobarak, and Barham (2013), we predicted
the likelihood of the placement of SEZs based on predetermined local geographic attributes over each of the
five-year periods (see Appendix Table 1).

To further alleviate the endogeneity concern, we adopted a jackknife method developed by Jackson,
Johnson, and Persico (2016), and estimated the probability of having an SEZ by excluding all data from its
host province. This “leave-out” estimate partly alleviates the concern about a weak instrument problem
as it is less likely to violate the exclusion restriction criterion. We ranked the counties within each province
based on the estimated probability, as was done by Duflo and Pande (2007) and Lipscomb, Mobarak, and
Barham (2013), and generated a 0/1 variable on the predicted S/EZ, for the top N; counties if the province
launched N; SEZs during that period. The predicted SEZ, serves as an instrumental variable for the actual
SEZj.
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THE EFFECTS OF SCHOOL SPENDING ON EDUCATIONAL AND ECONOMIC OUTCOMES: EVI-
DENCE FROM SCHOOL FINANCE REFORMS
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Our goal is to identify the causal effect of per pupil public school spending during childhood
on adult outcomes. Because the correlation between per pupil spending in an area and the adult
outcomes of students who attended those schools is likely con- founded by other factors (due
to residential segregation, Tiebout sorting, compensatory spending increases, etc.), we search for
ex- ogenous variation in per pupil spending. To this aim, we use only variation in school spending
during childhood that can be attrib- uted to the passage of court-ordered SFRs.
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As pointed out in Hoxby (2001), the effect of a SFR on school spend- ing depends on (i) the type of school
funding formula introduced by the reform and, (ii) how the funding formula interacts with the specific
characteristics of a district. To capture some of this com- plexity, we follow the typology outlined in Jackson,
Johnson, and Persico (2014) and categorize reforms into five main types. Foundation plans guarantee a
base level of per pupil school spend- ing and are designed to increase per pupil spending for the lowest-
spending districts. Spending limits prohibit per pupil spending levels above some predetermined amount.
Such plans tend to reduce spending for high spending and more affluent districts and may reduce spending
in the long run for all districts.

In predicting adult outcomes, our endogenous treatment variable is the natural log of average school
spending over the previous 12 years. This measures average school spending across all school-age years (5
to 17) for expected high school graduates that year. Having predicted the spending change a district will
experience with the passage of a court order, we now show how the interaction between this district-specific
prediction, Spend 4, and the timing of court-ordered reforms isolates plausibly exogenous variation in school
spending that is unrelated to potentially confounding district-level determinants of school spending. We
estimate equation [3] where In (®g4y ) is the natural log of average school spending over the previous 12
years, Spend d, is our scalar district-specific prediction of the reform-induced spending change, /> are
flexible event time indicators, ¢, is a district fixed effect, ¢, is a year fixed effect, and ¢, is random error.

In () = a+ ( Spend , S~ 1) wioi, |+ Zu+ 0+ 0r + a
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The coefficients ngr‘;ld, , map out the spending change associated with a court-mandated reform for a
district that is predicted (based on similar districts in other states) to double school spending by years 3
through 8 post reform. To show the changes in spending both by duration of exposure and by predicted
treatment intensity, Figure 2 plots the estimated flexible event study coefficients for a 5 percent predicted
change, a 10 percent change, and a 20 percent predicted change. If our instrument has identified exogenous
variation, districts that saw larger versus smaller predicted spending increases due to reforms should be on
very similar trajectories prior to reforms. Also, if the instrument is valid, after reforms districts with larger
versus smaller predicted spending increases due to reforms should experience larger versus smaller actual

spending increases.
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