Lecture 7: Regression Discontinuity Designs

Chris Walters

University of California, Berkeley and NBER

Introduction

P The regression discontinuity design (RD) is a common research design
in contemporary applied research

» RD methods can be applied when a researcher has specific information
about the rules determining the treatment of interest

» This lecture describes the RD framework and implementation

P See Imbens and Lemieux (2008) and Lee and Lemieux (2010) for
overviews
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Sharp RD: Basic Setup

P Consider a setting with a binary treatment D; € {0,1}, and potential
outcomes Y;(1) and Y;(0)

P Suppose the treatment is a deterministic and discontinuous function of an
observed covariate R;, such that

D; = 1{R, > C}.

P R, is called the running variable or forcing variable

» This is a sharp RD because the probability of treatment switches from
zero to one at the threshold

» Example: Scholarship awarded to students who score above a test score
threshold (Thistlethwaite and Campbell, 1960)
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Sharp RD: Basic Setup

> We get to observe Y;j(1) when R; > c and Y;(0) when R; < ¢

» Basic idea of the RD design: Compare observations just above and
just below the threshold to infer treatment effect

P Intuitively, the treatment may be as good as randomly assigned for
individuals in the neighborhood of R; = ¢, so comparing treated and
nontreated near c reveals a treatment effect
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Fig. 1. Assignment probabilities (SRD).
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Fig. 2. Potential and observed outcome regression functions.

Sharp RD ldentification

Chris Walters (UC Berkeley and NBER)

» Key assumption: potential outcomes are smooth at the threshold

» Formally:

lim E[Yi(d)|R:

rl= lim E[Y;(d)|Ri=r], d € {0,1}
r—ct r—c—

» Potential outcome CEFs must be continuous at the threshold

» The population just below must not be discretely different from the
population just above
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Sharp RD Identification

P If this assumption holds we have

lim E[Yi|Ri=r]— lim E[Yi|R =r]
r—c—

r—ct

= lim E[Y(D)|R =]~ lim E[Y;(0)|R; = 1]

— E[Yi(1)|R = c] - E[Yi(0)|R = c]

= E[Yi(1) - Yi(0)|Ri = ]

» When potential outcomes are smooth around the threshold, a comparison
of individuals just above and just below yields the average treatment
effect for those at the threshold

P |dentification argument is nonparametric: we don't need to assume
anything about the distribution of Y;(d) other than continuity of CEFs
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RD Interpretation
» RD as RCT

» Core intuition: for those right around the threshold, things could
have gone either way

» Interpret RD as a local randomized trial among those sufficiently
close to R = ¢

» Explains why RD evidence can be especially compelling relative to
other research designs — close to “gold standard” of RCT

» RD and CIA
» In a sharp RD we have the conditional independence assumption
(CIA) : (Yi(1), Yi(0)) L Di|R;

» CIA holds trivially because there is no variation in treatment
conditional on the running variable

» But there is also no common support

» RD estimation is a local extrapolation outside the support of the
data to predict the mean treated and untreated potential outcomes
at Ri=c
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Sharp RD Example: Lee (2008)

win again
» By definition, incumbents are candidates who were successful last time.
Some or all of incumbency advantage could be due to persistent
unobservables
How much of the incumbency advantage is causal?
Lee (2008) uses an RD design to estimate the causal effect of winning US
House elections
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Important phenomenon in politics: The incumbency advantage

» Candidates/parties who won the previous election are much more likely to

Year
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RD Diagnostics

» Fundamental RD identifying assumption: potential outcome distributions
are smooth around the threshold

» 1{R; > c} must be as good as randomly assigned in the neighborhood of
R,' = C

P May be violated if individuals can exactly control the value of R; and
therefore location relative to the threshold

» Example: suppose savvy politicians manipulate close elections to ensure
victory

P Identifying assumption is untestable, but some common diagnostics serve
as a guide to its plausibility

Chris Walters (UC Berkeley and NBER) Regression Discontinuity Designs 9/35



RD Diagnostic |: Covariate Balance

P In the absence of sorting in the neighborhood of the threshold, we'd
expect distributions of observed covariates to be smooth

P This motivates a check for whether there is a discontinuity in
E[Xi|R; = r] at R; = c for covariates X;

P Jumps in observables suggest sorting in the neighborhood of the
threshold — people just above are different than people just below

P This is analogous to a balance check in a randomized trial
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RD Diagnostic II: Bunching

P If individuals are strategically locating above or below the threshold, we'd
expect “bunching” on whichever side of the discontinuity is preferable

P More generally, strategic manipulation may generate anomalies in the
distribution of R; around the threshold

» McCrary (2008) suggests looking for a discontinuity in the density of the
running variable near R; = ¢

» Bunching around the threshold compromises RD estimates of treatment
effects, but may reflect a behavioral response of substantive interest

» Urquiola and Verhoogen (2009): Sorting around class size caps in
Chilean private schools
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FIGURE 5. FOURTH GRADE ENROLLMENT AND CLASS S1ZE IN URBAN PRIVATE VOUCHER SCHOOLS, 2002

Notes: Based on administrative data for 2002. The solid line describes the relationship between enrollment and class
size that would exist if the class size rule (equation (30) in the text) were applied mechanically. The circles plot actual
enrollment cell means of fourth grade class size. Only data for schools with fourth grade enrollments below 180 are
plotted; this excludes less than 2 percent of all schools.
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Panel A: Log income
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P Implementing a sharp RD requires estimating the right- and left-hand

limits

lim E[Yi|Ri =]
r—ct
lim E[Yi|Ri = r]
r—c—

P Since extrapolation is central to the RD design, the functional form used
to approximate E [Y;|Ri] really matters — it's not enough to just run OLS
and rely on approximation theorems

Chris Walters

An insufficiently flexible specification of the CEF runs the risk of
mistaking nonlinearity for treatment effect

But an overly flexible specification reduces precision and runs the risk of

overfitting

(UC Berkeley and NBER)

Regression Discontinuity Designs 12/35




QOutcome

Outcome

1.5

1
!

5
|

A. Linear E[Y,;| X]
|

)
h w

B. Nonlinear E[Y,,| X]
|




C. Nonlinearity mistaken for discontinuity
|

Outcome

RD Estimation

» Two general approaches to estimation:

» Global parametric

» Local nonparametric
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Global Parametric Estimation

» The global approach uses parametric functions to approximate E [Y;|R;],
typically polynomials

P OLS regression:
Yi=a+BL{R >c}+ 31 7okl {Ri < c} (R — ¢)

+ 3 mkl{R >} (Ri— o) + e
» This specification uses a Kth order polynomial with coefficients that
differ on each side of the threshold

P Think of this as fitting E [Y;(0)|Ri] and E [Yi(1)|Ri] with two separate
polynomials

P The parameter 3 measures the jump at the threshold
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Local Linear Regression

» More modern approach: use nonparametric techniques to approximate
the left- and right-hand limits

P Local linear regression:

(do,gc)) = arg min Zl {Ri<c}K (%) [Yi — o — 6o (R — ©)]?

0,60 ;

P Here K(-) is a symmetric kernel function maximized at 0, and h is a
bandwidth that vanishes to zero asymptotically
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Local Linear Regression

(do,(§0> = arg min Zl {Ri<c}K (R"h_c) [Yi — a0 — 8o (Ri — ©)]?

0,60 -

P This is weighted least squares using observations to the left of the
threshold, and weighting by proximity to the threshold

» The bandwidth h determines how quickly weight falls off away from the
discontinuity

» The linear term eliminates “boundary bias” exhibited by local constant
estimators (Fan and Gijbels, 1992)
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Local Linear Regression

<6zo,30> = arg cr{r;ig:)Zl {Ri<c}K (%) [Y:i — a0 — 80 (R — o))

P Qo is an estimate of lim E[Yj|Ri = r]
r—c—

P Run similar regression for the sample with R; > ¢ to get &1:

(64,31) = arg min Zl {Ri > c}K (R"h_c> [Y: — a1 — 61 (R — o)

ai,614=
1

P Treatment effect estimate is &1 — o
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RD Estimation: Global or Local?

» When should we use a global polynomial approach vs. a nonparametric
local approach?

P There is no real conceptual distinction. We need to choose a bandwidth,
a kernel, and a polynomial order

P Global estimators use an infinite bandwidth, a uniform kernel, and a
relatively high-order polynomial

P Local estimators use a smaller bandwidth, a kernel that places more
weight near the threshold, and a lower-order polynomial (often linear)
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Global vs. Local

P Some researchers dislike global estimators because these estimators can
rely heavily on data far from the discontinuity (Gelman and Imbens 2019,
“Why high-order polynomials should not be used in regression
discontinuity designs”)

P There can be no theorem on which approach works better in general. It
depends on the data generating process

» If the outcome CEF is well-approximated by a polynomial, then using
points far from the discontinuity to estimate the polynomial is legitimate
and increases precision. If not, the global approach may perform poorly

» Not much is known about choosing the optimal order of a global
polynomial for estimating the causal effect of interest; in contrast, there
is a large literature on optimal bandwidths for local estimators of
treatment effects

P Most researchers have gravitated towards local approaches
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Kernels and Bandwidths

P Suppose we want to run a local linear regression. What kernel and
bandwidth should we choose?

P The edge or triangular kernel is a popular choice:
K(u) = 1{lu| <1} x (1 — |u)
P The edge kernel has optimality properties in boundary estimation
problems (Cheng et al., 1997)

P Also intuitively appealing: it generates the weighting function

K(55) = LR — o] < h} x (1 57l

» The bandwidth h can then be interpreted as cutoff distance beyond which
data are not used, and weights fall linearly from 1 to 0 in remaining
sample

Chris Walters (UC Berkeley and NBER) Regression Discontinuity Designs 20/35

Optimal Bandwidth

Recent literature focuses on optimal choice of bandwidth h

P Bias/variance tradeoff: Smaller bandwidth reduces bias from using points
away from the boundary, but also reduces precision

P Intuitively, if there is not a lot of curvature in the CEF of Y; given R;, the
bias from using points away from the boundary to estimate a regression
slope will be small

P Imbens and Kalyanaraman (IK, 2012) use an asymptotic approximation
to the mean squared error of the RD estimator and derive the
MSE-minimizing bandwidth

» The optimal bandwidth depends on the curvature of the CEF near the
discontinuity — IK propose to use plug-in estimators of parameters
governing curvature
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Robust Confidence Intervals

» The IK bandwidth minimizes MSE and is therefore well-suited to
estimation

P Calonico, Cattaneo and Titiunik (CCT, 2014) show that it is poorly
suited for inference, however: the IK bandwidth leaves an asymptotically
non-negligible bias term in the estimate, so naive inference can lead to
misleading confidence intervals

» CCT advocate using a second, smaller bandwidth that removes this bias
term when constructing confidence intervals

» The IK bandwidth and CCT confidence intervals are automated in the
rdrobust stata package
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Fuzzy RD

P Sometimes treatment is generated by a discontinuous assignment rule
that isn't deterministic

» Suppose that

lim Pr[Di=1|R;=r] < lim Pr[D;=1|Ri =1]
r—c

r—c—

» The probability of treatment jumps at R; = ¢, but not necessarily from
zero to one

» This is a fuzzy RD scenario because treatment is only partly determined
by the threshold

» Example (Carneiro and Ginja, 2014): An income threshold determines

eligibility for a government program, but not every eligible household
participates
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Fig. 4. Potential and observed outcome regression (FRD).

Fuzzy RD Assumptions

P As before, assume the distributions of Y;(1) and Y;(0) are smooth around
the threshold

» Let Dj(1) and D;(0) denote potential treatment statuses for individual / if
s/he were located above and below the threshold. Assume these are also
smooth across the threshold, and

Di(1) > D;(0) Vi

P Crossing the threshold weakly increases the likelihood of treatment for
everyone
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Fuzzy RD

P Under these assumptions, we have
lim E[Yi|Ri=r]— lim E[Yi|Ri =r]
r—c—

r—ct

Iim E[D,"R,' = r] — Iim E[D,"R,' = r]
r—c—

r—ct

= E[Yi(1) - Yi(0)|Di(1) > Di(0), Ri = ]

» The numerator on the left is the jump in outcomes at the threshold, as in
a sharp RD

P The denominator is the change in the probability of treatment at the
threshold

» The ratio of the jump in the outcome CEF to the jump in the treatment
probability identifies an average treatment effect for individuals who
switch treatment status at the threshold

» Sound familiar?
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Fuzzy RD is IV

» Fuzzy RD is IV using a threshold indicator Z; = 1{R; > ¢} as an
instrument for treatment in the neighborhood of the threshold

» Think of Fuzzy RD as a local randomized trial with non-compliance
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Fuzzy RD and LATE

» This IV interpretation implies that fuzzy RD estimates are local in two
senses

» First, they are local to the threshold, R = ¢
P> Also applies to sharp RD estimates

» Second, they apply only to compliers at the threshold, rather than
everyone with R; = ¢

» This is the “local” in LATE
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Fuzzy RD Implementation

P As with sharp RD, we can implement fuzzy RD with a global parametric or local
nonparametric approach

P Global polynomial 2SLS:
Di =X+ 71{R; > c} + 31, 0ok 1 {R; < c} (Ri — ¢)*

Yi = O‘+/Bﬁi + Zszl Yok L {R;i < ¢} (R; — C)k
""Z/}le Yy1k1{R; > c} (R; — c)k + ¢

P Excluded instrument is 1 {R; > c}

P> Alternatively, we can estimate each of the four limits in the Wald ratio by local
linear regressions of Y; and D; on R;

P IK and CCT provide optimal bandwidths and robust confidence intervals for
fuzzy RD, also automated in rdrobust
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Fuzzy RD Example: Clark and Martorell (2014)

» Clark and Martorell (2014) use an RD design to estimate the causal effect
of high school graduation on earnings

P Two views on the causal effect of schooling on earnings:

» Human capital: Schooling raises productivity

» Signaling: Schooling reveals ability but has no productive value

OLS returns to education are especially large for grade 12

» How much of this “sheepskin effect” reflects signaling?
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Clark and Martorell (2014)

P CM use the fact that students in Texas must pass exams before
graduating high school

P Testing starts in 10th grade and students can try multiple times, but
eventually face a “last chance” exam at the end of 12th grade

» Students who just barely fail vs. barely pass should have similar human
capital, but differ in educational credentials

RD therefore plausibly identifies the signaling value of a diploma

P There is some “slippage” even with last-chance exams — so the RD is
fuzzy
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F16. 1.—Last-chance exam scores and diploma receipt. The graphs are based on the last-
chance sample. See table 1 and the text. Dots are test score cell means. The scores on the x-
axis are the minimum of the section scores (recentered to be zero at the passing cutoff)
that are taken in the last-chance exam. Lines are fourth-order polynomials fitted separately
on either side of the passing threshold.



TABLE 2
ImPACT OF PASSING THE LAST-CHANCE EXAM ON THE PROBABILITY
oF EARNING A DirpLoMA

Receive High School Diploma (1) (2) (3) (4) (5)

By end of summer after 12th grade
(sample mean = .363) .545 484 481 475 .486
(.007) (.009) (.012) (.016) (.009)
Within 1 year of last-chance exam
(sample mean = .452) .480 420 425 424 422
(.007) (.009) (.012) (.016) (.009)
Within 2 years of last-chance exam
(sample mean = .465) 472 415 419 417 417
(.007) (.009) (.012) (.016) (.009)
Within 3 years of last-chance exam

(sample mean = .468) .468 412 416 414 414
(.007) (.009) (.012) (.016) (.009)
Baseline covariates? No No No No Yes
Degree of test score polynomial 1 2 3 4 2

Note.—The table is based on last-chance samples (see table 1 and the text). “Degree of
test score polynomial” refers to the test score polynomials controlled for in these regres-
sions (all interacted with a dummy for passing the exam). Column 5 presents estimates
based on models that also control for covariates (see note to table 1). Robust standard
errors are in parentheses. There are 37,571 observations in each panel.
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Regression Kink Design

P Recent extension of RD: The regression kink design (RKD; Card et al.,
2015)

P Instead of exploiting a discontinuity in the CEF of the treatment variable,
the regression kink design exploits a kink in the CEF of a continuous
treatment (i.e. a discontinuity in the first derivative)

» A corresponding kink in the distribution of the outcome variable suggests
the presence of a treatment effect
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Regression Kink Design

P Suppose the treatment of interest is a deterministic function of the
running variable:

Si=b(Ri)

» Here b(-) is a continuous function with a kink at ¢

» Example (Card et al., 2015): Unemployment benefit is a kinked function
of past earnings

P Let fi(s) denote i's potential outcome as a function of the treatment.
The observed outcome is

Y = fi(Si)
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Regression Kink Design

P Then under mild regularity conditions:

lim

dE[Yi|Ri=r] _

r—ct

dr

lim

r—c—

dE[Y;|Ri=r]
dr

=E [f,’(S,)|R, = C]

lim b'(r) — lim b'(r)
r—ct r—c—

The ratio of the discontinuity in the outcome derivative to the discontinuity in
the treatment derivative identifies the average marginal effect of treatment for

individuals at the threshold

As before, the key assumption is that potential outcomes are smooth around the
threshold — any kink in the outcome CEF must be due to the treatment

Diagnostics: Look for kinks in covariate distributions, or bunching in the density

of R,'

As with RD, we can generalize RKD to a “fuzzy” scenario where the treatment
is not a deterministic function of R;, but E [S;|R;] is kinked at R; = ¢

Can be implemented via local polynomial regression with the analogue of the IK

bandwidth and CCT robust Cl, automated in rdrobust
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Figure 3: Unemployment Duration
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