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Introduction

I The regression discontinuity design (RD) is a common research design
in contemporary applied research

I RD methods can be applied when a researcher has specific information
about the rules determining the treatment of interest

I This lecture describes the RD framework and implementation

I See Imbens and Lemieux (2008) and Lee and Lemieux (2010) for
overviews
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Sharp RD: Basic Setup

I Consider a setting with a binary treatment Di 2 {0, 1}, and potential
outcomes Yi (1) and Yi (0)

I Suppose the treatment is a deterministic and discontinuous function of an
observed covariate Ri , such that

Di = 1 {Ri > c}.

I Ri is called the running variable or forcing variable

I This is a sharp RD because the probability of treatment switches from
zero to one at the threshold

I Example: Scholarship awarded to students who score above a test score
threshold (Thistlethwaite and Campbell, 1960)
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Sharp RD: Basic Setup

I We get to observe Yi (1) when Ri > c and Yi (0) when Ri  c

I Basic idea of the RD design: Compare observations just above and
just below the threshold to infer treatment e↵ect

I Intuitively, the treatment may be as good as randomly assigned for
individuals in the neighborhood of Ri = c , so comparing treated and
nontreated near c reveals a treatment e↵ect
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Sharp RD Identification

I Key assumption: potential outcomes are smooth at the threshold

I Formally:

lim
r!c+

E [Yi (d)|Ri = r ] = lim
r!c�

E [Yi (d)|Ri = r ], d 2 {0, 1}

I Potential outcome CEFs must be continuous at the threshold

I The population just below must not be discretely di↵erent from the
population just above
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Sharp RD Identification

I If this assumption holds we have

lim
r!c+

E [Yi |Ri = r ]� lim
r!c�

E [Yi |Ri = r ]

= lim
r!c+

E [Yi (1)|Ri = r ]� lim
r!c�

E [Yi (0)|Ri = r ]

= E [Yi (1)|Ri = c]� E [Yi (0)|Ri = c]

= E [Yi (1)� Yi (0)|Ri = c]

I When potential outcomes are smooth around the threshold, a comparison
of individuals just above and just below yields the average treatment
e↵ect for those at the threshold

I Identification argument is nonparametric: we don’t need to assume
anything about the distribution of Yi (d) other than continuity of CEFs
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RD Interpretation

I RD as RCT

I Core intuition: for those right around the threshold, things could
have gone either way

I Interpret RD as a local randomized trial among those su�ciently
close to Ri = c

I Explains why RD evidence can be especially compelling relative to
other research designs – close to “gold standard” of RCT

I RD and CIA

I In a sharp RD we have the conditional independence assumption
(CIA) : (Yi (1),Yi (0)) ?? Di |Ri

I CIA holds trivially because there is no variation in treatment
conditional on the running variable

I But there is also no common support

I RD estimation is a local extrapolation outside the support of the
data to predict the mean treated and untreated potential outcomes
at Ri = c
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Sharp RD Example: Lee (2008)

I Important phenomenon in politics: The incumbency advantage

I Candidates/parties who won the previous election are much more likely to
win again

I By definition, incumbents are candidates who were successful last time.
Some or all of incumbency advantage could be due to persistent
unobservables

I How much of the incumbency advantage is causal?

I Lee (2008) uses an RD design to estimate the causal e↵ect of winning US
House elections
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Representatives, in any given election year, the incumbent party in a given congressional district will likely
win. The solid line in Fig. 1 shows that this re-election rate is about 90% and has been fairly stable over the
past 50 years.11 Well known in the political science literature, the electoral success of the incumbent party is
also reflected in the two-party vote share, which is about 60–70% during the same period.12

As might be expected, incumbent candidates also enjoy a high electoral success rate. Fig. 1 shows that the
winning candidate has typically had an 80 percent chance of both running for re-election and ultimately winning.
This is slightly lower, because the probability that an incumbent will be a candidate in the next election is about
88%, and the probability of winning, conditional on running for election is about 90%. By contrast, the runner-
up candidate typically had a 3% chance of becoming a candidate and winning the next election. The probability
that the runner-up even becomes a candidate in the next election is about 20% during this period.

The overwhelming success of House incumbents draws public attention whenever concerns arise that
Representatives are using the privileges and resources of office to gain an ‘‘unfair’’ advantage over potential
challengers. Indeed, the casual observer is tempted to interpret Fig. 1 as evidence that there is an electoral
advantage to incumbency—that winning has a causal influence on the probability that the candidate will run
for office again and eventually win the next election. It is well known, however, that the simple comparison of
incumbent and non-incumbent electoral outcomes does not necessarily represent anything about a true
electoral advantage of being an incumbent.

As is well-articulated in Erikson (1971), the inference problem involves the possibility of a ‘‘reciprocal causal
relationship’’. Some—potentially all—of the difference is due to a simple selection effect: incumbents are, by
definition, those politicians who were successful in the previous election. If what makes them successful is somewhat
persistent over time, they should be expected to be somewhat more successful when running for re-election.

3.2. Model

The ideal thought experiment for measuring the incumbency advantage would exogenously change the
incumbent party in a district from, for example, Republican to Democrat, while keeping all other factors
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Fig. 1. Electoral success of U.S. House incumbents: 1948–1998. Note: Calculated from ICPSR study 7757 (ICPSR, 1995). Details in
Appendix A. Incumbent party is the party that won the election in the preceding election in that congressional district. Due to re-
districting on years that end with ‘‘2’’, there are no points on those years. Other series are the fraction of individual candidates in that year,
who win an election in the following period, for both winners and runner-up candidates of that year.

11Calculated from data on historical election returns from ICPSR study 7757 (ICPSR, 1995). See Appendix A for details. Note that the
‘‘incumbent party’’ is undefined for years that end with ‘2’ due to decennial congressional re-districting.

12See, for example, the overview in Jacobson (1997).
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statistically significant. These data are consistent with implication (c) of Proposition 3, that all pre-determined
characteristics are balanced in a neighborhood of the discontinuity threshold. Figs. 2b, 3b, 4b, and 5b, also
corroborate this finding. These lower panels examine variables that have already been determined as of
election t: the average number of terms the candidate has served in Congress, the average number of times he
has been a nominee, as well as electoral outcomes for the party in election t! 1. The figures, which also
suggest that the fourth order polynomial approximations are adequate, show a smooth relation between each
variable and the Democratic vote share margin at t, as implied by (c) of Proposition 3.

The only differences in Table 1 that do not vanish completely as one examines closer and closer elections,
are the variables in the first two rows of Table 1. Of course, the Democratic vote share or the probability of a
Democratic victory in election tþ 1 is determined after the election t. Thus the discontinuity gap in the final
set of columns represents the RDD estimate of the causal effect of incumbency on those outcomes.

In the analysis of randomized experiments, analysts often include baseline covariates in a regression analysis
to reduce sampling variability in the impact estimates. Because the baseline covariates are independent of
treatment status, impact estimates are expected to be somewhat insensitive to the inclusion of these covariates.
Table 2 shows this to be true for these data: the results are quite robust to various specifications. Column (1)
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Fig. 5. (a) Democratic party probability victory in election tþ 1, by margin of victory in election t: local averages and parametric fit. (b)
Democratic probability of victory in election t! 1, by margin of victory in election t: local averages and parametric fit.
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RD Diagnostics

I Fundamental RD identifying assumption: potential outcome distributions
are smooth around the threshold

I 1 {Ri > c} must be as good as randomly assigned in the neighborhood of
Ri = c

I May be violated if individuals can exactly control the value of Ri and
therefore location relative to the threshold

I Example: suppose savvy politicians manipulate close elections to ensure
victory

I Identifying assumption is untestable, but some common diagnostics serve
as a guide to its plausibility
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RD Diagnostic I: Covariate Balance

I In the absence of sorting in the neighborhood of the threshold, we’d
expect distributions of observed covariates to be smooth

I This motivates a check for whether there is a discontinuity in
E [Xi |Ri = r ] at Ri = c for covariates Xi

I Jumps in observables suggest sorting in the neighborhood of the
threshold – people just above are di↵erent than people just below

I This is analogous to a balance check in a randomized trial
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statistically significant. These data are consistent with implication (c) of Proposition 3, that all pre-determined
characteristics are balanced in a neighborhood of the discontinuity threshold. Figs. 2b, 3b, 4b, and 5b, also
corroborate this finding. These lower panels examine variables that have already been determined as of
election t: the average number of terms the candidate has served in Congress, the average number of times he
has been a nominee, as well as electoral outcomes for the party in election t! 1. The figures, which also
suggest that the fourth order polynomial approximations are adequate, show a smooth relation between each
variable and the Democratic vote share margin at t, as implied by (c) of Proposition 3.

The only differences in Table 1 that do not vanish completely as one examines closer and closer elections,
are the variables in the first two rows of Table 1. Of course, the Democratic vote share or the probability of a
Democratic victory in election tþ 1 is determined after the election t. Thus the discontinuity gap in the final
set of columns represents the RDD estimate of the causal effect of incumbency on those outcomes.

In the analysis of randomized experiments, analysts often include baseline covariates in a regression analysis
to reduce sampling variability in the impact estimates. Because the baseline covariates are independent of
treatment status, impact estimates are expected to be somewhat insensitive to the inclusion of these covariates.
Table 2 shows this to be true for these data: the results are quite robust to various specifications. Column (1)

ARTICLE IN PRESS

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25

Local Average

Logit fit

P
ro

b
ab

il
it

y
 o

f 
 V

ic
to

ry
, 
E

le
ct

io
n
 t

+
1

Democratic Vote Share Margin of Victory, Election t

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25

Local Average

Logit fit

P
ro

b
ab

il
it

y
 o

f 
V

ic
to

ry
, 
E

le
ct

io
n
 t

-1

Democratic Vote Share Margin of Victory, Election t

Fig. 5. (a) Democratic party probability victory in election tþ 1, by margin of victory in election t: local averages and parametric fit. (b)
Democratic probability of victory in election t! 1, by margin of victory in election t: local averages and parametric fit.
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RD Diagnostic II: Bunching

I If individuals are strategically locating above or below the threshold, we’d
expect “bunching” on whichever side of the discontinuity is preferable

I More generally, strategic manipulation may generate anomalies in the
distribution of Ri around the threshold

I McCrary (2008) suggests looking for a discontinuity in the density of the
running variable near Ri = c

I Bunching around the threshold compromises RD estimates of treatment
e↵ects, but may reflect a behavioral response of substantive interest

I Urquiola and Verhoogen (2009): Sorting around class size caps in
Chilean private schools
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In such a case, differences in students’ performance can be attributed to the very different class 
sizes they experience.

More formally, consider a standard RD model, assuming one class-size cutoff and a homoge-
neous effect of class size on test scores (Van der Klaauw 2002): 

(31a)  T S i  = γ E(C S i  |  X i ) + a( X i ) +  u  i  ,

(31b)  E(C S i  |  X i ) = η 1( X i  ≥     ̃  
 

 X  0  ) + b( X i ) ,
where i indexes schools, T S i  is the average fourth-grade test score in school i, C S i  is average 
fourth-grade class size,  X i  is fourth-grade enrollment,    ̃    X  0  is the value of the class-size cutoff (i.e., 
45), a(⋅) and b(⋅) are flexible functions of enrollment, and E( u  i  |  X i ) = 0. In the present setting this 
model corresponds to a “fuzzy” (as opposed to “sharp”) RD design, since, as Figure 5 indicates, 
enrollment affects, but does not perfectly explain, class size.

In the context of this model, if a(⋅) and b(⋅) are continuous at    ̃    X  0  and the mean of class size 
conditional on enrollment, E(C S i  |  X i ), is discontinuous at    ̃    X  0 , then the class-size effect, γ, is non-
parametrically identified at the cutoff (Jinyong Hahn, Petra E. Todd, and Van der Klaauw 2001). 
Intuitively, in a small enough neighborhood around the cutoff, a(⋅) and b(⋅) are constant and any 
discontinuity in test scores can be attributed to the discontinuity in the conditional mean of class 
size. In practice, one rarely has enough data in neighborhoods around the cutoff to estimate γ 
precisely. As Lee and David Card (2008) point out, if  X i  is discrete, as in our case, one cannot 
estimate the class-size effect nonparametrically, even with an infinite amount of data, and one 
must therefore choose parametric specifications for a(⋅) and b(⋅). If these are specified correctly, 

Figure 5. Fourth Grade Enrollment and Class Size in Urban Private Voucher Schools, 2002

Notes: Based on administrative data for 2002. The solid line describes the relationship between enrollment and class 
size that would exist if the class size rule (equation (30) in the text) were applied mechanically. The circles plot actual 
enrollment cell means of fourth grade class size. Only data for schools with fourth grade enrollments below 180 are 
plotted; this excludes less than 2 percent of all schools.
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with the visual evidence in Figure 5, the first one suggests that class size drops by about 17 stu-
dents at the first threshold. The declines at the first three of the four cutoffs are statistically signif-
icant, but become progressively smaller.32 In this specification, all standard errors are  clustered 
by enrollment levels, as Lee and Card (2008) suggest is appropriate when the assignment vari-
able (here enrollment) is discrete.

32 Although we omit the results, adding controls for individuals’ characteristics has essentially no effect on the key 
coefficients.

Figure 6. Test Scores and Enrollment in Urban Private Voucher Schools, 2002

Notes: Test scores come from 2002 individual-level SIMCE data aggregated at the school level, and enrollment is 
drawn from administrative data for the same year. The figures plot “raw” enrollment-cell means of test scores, along 
with the fitted values of a locally weighted regression calculated within each enrollment segment.
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Figure 7. Histograms of Fourth Grade Enrollment in Urban Private Schools, 2002

Notes: Enrollment is drawn from administrative data for 2002. For visual clarity, only schools with fourth grade enroll-
ment below 225 are displayed. This excludes less than 1 percent of all schools.
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fathers’ schooling, and income display substantial and statistically significant jumps at the first 
enrollment cutoff; the coefficients for subsequent cutoffs are positive but not significant. This is 
further evidence that the continuity assumption on the function a( X i ) in (31a)—which is presumed 
to capture the effect of all variables that vary with enrollment except class size—is violated.

Figure 8. Student Characteristics and Enrollment in Urban Private Voucher Schools, 2002

Notes: Income and mothers’ schooling come from 2002 individual-level SIMCE data aggregated at the school level.  
Enrollment is drawn from administrative data for the same year. The figure presents “raw” enrollment-cell means, 
along with the fitted values of a locally weighted regression calculated within each enrollment segment. Only data for 
schools with fourth grade enrollment below 180 are plotted; this excludes less than 2 percent of all schools.
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RD Estimation

I Implementing a sharp RD requires estimating the right- and left-hand
limits

lim
r!c+

E [Yi |Ri = r ]

lim
r!c�

E [Yi |Ri = r ]

I Since extrapolation is central to the RD design, the functional form used
to approximate E [Yi |Ri ] really matters – it’s not enough to just run OLS
and rely on approximation theorems

I An insu�ciently flexible specification of the CEF runs the risk of
mistaking nonlinearity for treatment e↵ect

I But an overly flexible specification reduces precision and runs the risk of
overfitting
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Figure 6.1.1: The sharp regression discontinuity design
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RD Estimation

I Two general approaches to estimation:

I Global parametric

I Local nonparametric
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Global Parametric Estimation

I The global approach uses parametric functions to approximate E [Yi |Ri ],
typically polynomials

I OLS regression:

Yi = ↵+ �1 {Ri > c}+
PK

k=1 �0k1 {Ri  c} (Ri � c)k

+
PK

k=1 �1k1 {Ri > c} (Ri � c)k + ✏i

I This specification uses a K th order polynomial with coe�cients that
di↵er on each side of the threshold

I Think of this as fitting E [Yi (0)|Ri ] and E [Yi (1)|Ri ] with two separate
polynomials

I The parameter � measures the jump at the threshold
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Local Linear Regression

I More modern approach: use nonparametric techniques to approximate
the left- and right-hand limits

I Local linear regression:

⇣
↵̂0, �̂0

⌘
= arg min

↵0,�0

X

i

1 {Ri  c}K
⇣

Ri�c
h

⌘
[Yi � ↵0 � �0 (Ri � c)]2

I Here K(·) is a symmetric kernel function maximized at 0, and h is a
bandwidth that vanishes to zero asymptotically
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Local Linear Regression

⇣
↵̂0, �̂0

⌘
= arg min

↵0,�0

X

i

1 {Ri  c}K
⇣

Ri�c
h

⌘
[Yi � ↵0 � �0 (Ri � c)]2

I This is weighted least squares using observations to the left of the
threshold, and weighting by proximity to the threshold

I The bandwidth h determines how quickly weight falls o↵ away from the
discontinuity

I The linear term eliminates “boundary bias” exhibited by local constant
estimators (Fan and Gijbels, 1992)
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Local Linear Regression

⇣
↵̂0, �̂0

⌘
= arg min

↵0,�0

X

i

1 {Ri  c}K
⇣

Ri�c
h

⌘
[Yi � ↵0 � �0 (Ri � c)]2

I ↵̂0 is an estimate of lim
r!c�

E [Yi |Ri = r ]

I Run similar regression for the sample with Ri > c to get ↵̂1:

⇣
↵̂1, �̂1

⌘
= arg min

↵1,�1

X

i

1 {Ri > c}K
⇣

Ri�c
h

⌘
[Yi � ↵1 � �1 (Ri � c)]2

I Treatment e↵ect estimate is ↵̂1 � ↵̂0

Chris Walters (UC Berkeley and NBER) Regression Discontinuity Designs 17/35



RD Estimation: Global or Local?

I When should we use a global polynomial approach vs. a nonparametric
local approach?

I There is no real conceptual distinction. We need to choose a bandwidth,
a kernel, and a polynomial order

I Global estimators use an infinite bandwidth, a uniform kernel, and a
relatively high-order polynomial

I Local estimators use a smaller bandwidth, a kernel that places more
weight near the threshold, and a lower-order polynomial (often linear)
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Global vs. Local

I Some researchers dislike global estimators because these estimators can
rely heavily on data far from the discontinuity (Gelman and Imbens 2019,
“Why high-order polynomials should not be used in regression
discontinuity designs”)

I There can be no theorem on which approach works better in general. It
depends on the data generating process

I If the outcome CEF is well-approximated by a polynomial, then using
points far from the discontinuity to estimate the polynomial is legitimate
and increases precision. If not, the global approach may perform poorly

I Not much is known about choosing the optimal order of a global
polynomial for estimating the causal e↵ect of interest; in contrast, there
is a large literature on optimal bandwidths for local estimators of
treatment e↵ects

I Most researchers have gravitated towards local approaches
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Kernels and Bandwidths

I Suppose we want to run a local linear regression. What kernel and
bandwidth should we choose?

I The edge or triangular kernel is a popular choice:

K(u) = 1 {|u|  1}⇥ (1� |u|)

I The edge kernel has optimality properties in boundary estimation
problems (Cheng et al., 1997)

I Also intuitively appealing: it generates the weighting function

K
⇣

Ri�c
h

⌘
= 1 {|Ri � c|  h}⇥

⇣
1� |Ri�c|

h

⌘

I The bandwidth h can then be interpreted as cuto↵ distance beyond which
data are not used, and weights fall linearly from 1 to 0 in remaining
sample
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Optimal Bandwidth

I Recent literature focuses on optimal choice of bandwidth h

I Bias/variance tradeo↵: Smaller bandwidth reduces bias from using points
away from the boundary, but also reduces precision

I Intuitively, if there is not a lot of curvature in the CEF of Yi given Ri , the
bias from using points away from the boundary to estimate a regression
slope will be small

I Imbens and Kalyanaraman (IK, 2012) use an asymptotic approximation
to the mean squared error of the RD estimator and derive the
MSE-minimizing bandwidth

I The optimal bandwidth depends on the curvature of the CEF near the
discontinuity – IK propose to use plug-in estimators of parameters
governing curvature
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Robust Confidence Intervals

I The IK bandwidth minimizes MSE and is therefore well-suited to
estimation

I Calonico, Cattaneo and Titiunik (CCT, 2014) show that it is poorly
suited for inference, however: the IK bandwidth leaves an asymptotically
non-negligible bias term in the estimate, so naive inference can lead to
misleading confidence intervals

I CCT advocate using a second, smaller bandwidth that removes this bias
term when constructing confidence intervals

I The IK bandwidth and CCT confidence intervals are automated in the
rdrobust stata package
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Fuzzy RD

I Sometimes treatment is generated by a discontinuous assignment rule
that isn’t deterministic

I Suppose that

lim
r!c�

Pr [Di = 1|Ri = r ] < lim
r!c+

Pr [Di = 1|Ri = r ]

I The probability of treatment jumps at Ri = c, but not necessarily from
zero to one

I This is a fuzzy RD scenario because treatment is only partly determined
by the threshold

I Example (Carneiro and Ginja, 2014): An income threshold determines
eligibility for a government program, but not every eligible household
participates
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Fuzzy RD Assumptions

I As before, assume the distributions of Yi (1) and Yi (0) are smooth around
the threshold

I Let Di (1) and Di (0) denote potential treatment statuses for individual i if
s/he were located above and below the threshold. Assume these are also
smooth across the threshold, and

Di (1) � Di (0) 8i

I Crossing the threshold weakly increases the likelihood of treatment for
everyone
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Fuzzy RD

I Under these assumptions, we have

lim
r!c+

E [Yi |Ri = r ]� lim
r!c�

E [Yi |Ri = r ]

lim
r!c+

E [Di |Ri = r ]� lim
r!c�

E [Di |Ri = r ]

= E [Yi (1)� Yi (0)|Di (1) > Di (0),Ri = c]

I The numerator on the left is the jump in outcomes at the threshold, as in
a sharp RD

I The denominator is the change in the probability of treatment at the
threshold

I The ratio of the jump in the outcome CEF to the jump in the treatment
probability identifies an average treatment e↵ect for individuals who
switch treatment status at the threshold

I Sound familiar?
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Fuzzy RD is IV

I Fuzzy RD is IV using a threshold indicator Zi = 1 {Ri > c} as an
instrument for treatment in the neighborhood of the threshold

I Think of Fuzzy RD as a local randomized trial with non-compliance
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Fuzzy RD and LATE

I This IV interpretation implies that fuzzy RD estimates are local in two
senses

I First, they are local to the threshold, Ri = c

I Also applies to sharp RD estimates

I Second, they apply only to compliers at the threshold, rather than
everyone with Ri = c

I This is the “local” in LATE
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Fuzzy RD Implementation

I As with sharp RD, we can implement fuzzy RD with a global parametric or local
nonparametric approach

I Global polynomial 2SLS:

Di = �+ ⇡1 {Ri > c}+
PK

k=1 ✓0k1 {Ri  c} (Ri � c)k

+
PK

k=1 ✓1k1 {Ri > c} (Ri � c)k + ⌘i

Yi = ↵+ �D̂i +
PK

k=1 �0k1 {Ri  c} (Ri � c)k

+
PK

k=1 �1k1 {Ri > c} (Ri � c)k + ✏i

I Excluded instrument is 1 {Ri > c}

I Alternatively, we can estimate each of the four limits in the Wald ratio by local
linear regressions of Yi and Di on Ri

I IK and CCT provide optimal bandwidths and robust confidence intervals for
fuzzy RD, also automated in rdrobust
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Fuzzy RD Example: Clark and Martorell (2014)

I Clark and Martorell (2014) use an RD design to estimate the causal e↵ect
of high school graduation on earnings

I Two views on the causal e↵ect of schooling on earnings:

I Human capital: Schooling raises productivity

I Signaling: Schooling reveals ability but has no productive value

I OLS returns to education are especially large for grade 12

I How much of this “sheepskin e↵ect” reflects signaling?
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2.1 OLS Estimates of Earnings Functions

Our equation of interest is

log yi = ↵+ �Si + �1Expi + �2Exp2
i
+ ✏i

A few stylized facts to know about earnings functions:

• The OLS return to schooling � is 7 to 8 percent in most data sets

• The empirical relationship between log earnings and schooling is surprisingly linear
Ch. 30." Causal Effect of Education on Earnings 1807 
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Fig. 2. Relationship between mean log hourly wages and completed education, men aged 40-45 in 1994 1996 
Current Population Survey. Mean education by degree category estimated from February 1990 CPS. 

exceptionally high return to tile 16th year of schooling). Apart f[Olil this feature, Park 
shows that the linear functional form provides a surprisingly good fit to the data. 

Despite economists' general satisfaction with the traditional measure of schooling, in 
the late 1980s the US Census Bureau decided to shift toward a degree-based system of 
measuring post-high-school education (see Kominski and Siegel, 1992). Thus, individuals 
in the 1990 Census and recent Current Population Surveys were no longer asked how 
many years of college they had completed: rather they were asked to report their college 
degrees. This change makes it more difficult to estimate the standard human capital earn- 
ings model with recent US data, or to measure changes in the structure of education-related 
wage differentials. Nevertheless, a concordance between the older years-of-education 
variable and the new degree-based variable can be constructed from a cross-tabulation 
of responses to the two questions included in a supplement to the February 1990 CPS. Use 
of this concordance provides some rather surprising support for the linearity assumption 
embedded in Mincer's original specification. 9 

Fig. 2 shows wage and schooling data for a sample of men age 40-55 in the 1994-1996 
CPS. m Mean log wages for each education group (e.g., men with a junior college or 
Associates degree in an academic program, denoted by "AA-Academic" in the graph) 
are graphed against the mean number of years of education for the group measured in the 
February 1990 concordance. Apart from men who report 11 years of schooling, or 12 years 

9 See Park (1994, 1996) for further analysis of the linearity assumption 
i01 use men in this age range to abstract from the effects of experience. As shown in Fig. la, after age 40 the 

age-earnings profiles of different education groups are roughly parallel. 

• An additively separable quadratic experience profile also fits the data pretty well

• This model typically explains around 30% of the variation in log earnings.
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Clark and Martorell (2014)

I CM use the fact that students in Texas must pass exams before
graduating high school

I Testing starts in 10th grade and students can try multiple times, but
eventually face a “last chance” exam at the end of 12th grade

I Students who just barely fail vs. barely pass should have similar human
capital, but di↵er in educational credentials

I RD therefore plausibly identifies the signaling value of a diploma

I There is some “slippage” even with last-chance exams – so the RD is
fuzzy
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student’s score to be the minimum of these normalized scores. As such,
students pass if and only if this normalized score is nonnegative. The
dots are cell means, and the lines are fitted values from a regression of
diploma receipt on a fourth-order polynomial in the score ðestimated
separately on either side of the passing cutoffÞ. The fraction of students
with a diploma increases sharply as scores cross the passing threshold,
from around 0.4 to 0.9. This implies that barely passing the last-chance
exam substantially increases the probability of earning a diploma.

A. Main Estimates

We use fuzzy regression discontinuity methods ðAngrist and Lavy 1999;
Hahn et al. 2001Þ to exploit this discontinuity. In particular, we use pass-
ing status on the last-chance exam as an instrumental variable for di-
ploma receipt in models that control for flexible functions of the exam
scores ði.e., the variable on the horizontal axis in fig. 1Þ. More formally,
we estimate the following equations:

Yi 5 b0 1 b1Di 1 f ðpiÞ1 εi ; ð1Þ

FIG. 1.—Last-chance exam scores and diploma receipt. The graphs are based on the last-
chance sample. See table 1 and the text. Dots are test score cell means. The scores on the x -
axis are the minimum of the section scores ðrecentered to be zero at the passing cutoff Þ
that are taken in the last-chance exam. Lines are fourth-order polynomials fitted separately
on either side of the passing threshold.
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school ðwhen most individuals are around 30 years oldÞ may seem too
early to capture long-run effects, for workers with 12 years of schooling,
the experience profile in annual earnings is fairly flat beyond age 30
ðHeckman, Lochner, and Todd 2006Þ. As such, it is unlikely that there
are important signaling effects that appear beyond but not within our
observation window.
Three features of these graphs stand out. First, from inspection of the

y -axes, it is clear that average earnings are low in these years. This is ex-
pected: our sample consists of lower-ability individuals early in their ca-
reers, and these graphs includeworkerswith zero earnings.23 Second, there
is a strong positive correlation between earnings and last-chance exam
scores ði.e., the fitted lines are upward slopingÞ. This is consistent with a
strong positive correlation between earnings and high school diploma sta-

TABLE 2
Impact of Passing the Last-Chance Exam on the Probability

of Earning a Diploma

Receive High School Diploma ð1Þ ð2Þ ð3Þ ð4Þ ð5Þ

By end of summer after 12th grade
ðsample mean 5 .363Þ .545 .484 .481 .475 .486

ð.007Þ ð.009Þ ð.012Þ ð.016Þ ð.009Þ
Within 1 year of last-chance exam
ðsample mean 5 .452Þ .480 .420 .425 .424 .422

ð.007Þ ð.009Þ ð.012Þ ð.016Þ ð.009Þ
Within 2 years of last-chance exam
ðsample mean 5 .465Þ .472 .415 .419 .417 .417

ð.007Þ ð.009Þ ð.012Þ ð.016Þ ð.009Þ
Within 3 years of last-chance exam
ðsample mean 5 .468Þ .468 .412 .416 .414 .414

ð.007Þ ð.009Þ ð.012Þ ð.016Þ ð.009Þ
Baseline covariates? No No No No Yes
Degree of test score polynomial 1 2 3 4 2

Note.—The table is based on last-chance samples ðsee table 1 and the textÞ. “Degree of
test score polynomial” refers to the test score polynomials controlled for in these regres-
sions ðall interacted with a dummy for passing the examÞ. Column 5 presents estimates
based on models that also control for covariates ðsee note to table 1Þ. Robust standard
errors are in parentheses. There are 37,571 observations in each panel.

23 To check that these mean earnings numbers are reasonable, we analyzed data from
the 1997 National Longitudinal Survey of Youth ðNLSYÞ. To make the NLSY as comparable
as possible to the last-chance sample, we limited the sample to individuals who enrolled in
at least grade 10 but did not earn a college degree. We also reweighted the NLSY sample so
that it matched the distribution across gender, race, and test score percentiles ðusing the
Armed Forces Qualification Test ½AFQT$ score in the NLSY and the initial exit exam score
in the last-chance sampleÞ. Earnings in the reweighted NLSY data were broadly in line with
earnings in the state-level administrative data set ðdetails available on requestÞ. Note that
since we have fewer follow-up years for the more recent cohorts, these figures are based on
an “unbalanced panel” in years 7–11.
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tus even in the last-chance sample of students who remain in school until
the end of grade 12. We return to this point in our discussion of the find-
ings. Third, there is no indication of any jump in earnings at the passing
cutoff.
The estimated discontinuities reported in table 3 are consistent with

this last assertion. For each earnings outcome ði.e., for each year group-
ingÞ, columns 1–4 report estimated discontinuities for first- through
fourth-order polynomials, where thepolynomials are fully interactedwith
an indicator for passing the last-chance exam. For each outcome, the
estimated discontinuities are small in magnitude, small relative to the
mean earnings of those who barely failed the exam ðcol. 1Þ and statis-
tically indistinguishable from zero. Moreover, the estimates are robust
to the choice of polynomial. Goodness-of-fit statistics suggest that the
second-order polynomial is the preferred specification, and column 5
reports estimates from a model that uses this preferred polynomial and
controls for baseline covariates. In column 6 we report estimates from a
model in which the coefficients of the polynomial are restricted to be the
same on either side of the passing cutoff. These estimates are more pre-

FIG. 2.—Earnings by last-chance exam scores. The graphs are based on the last-chance
samples. See table 1 and the text. Dots are test score cell means. The scores on the x-axis are
the minimum of the section scores ðrecentered to be zero at the passing cutoff Þ that are
taken in the last-chance exam. Lines are fourth-order polynomials fitted separately on
either side of the passing threshold.
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Regression Kink Design

I Recent extension of RD: The regression kink design (RKD; Card et al.,
2015)

I Instead of exploiting a discontinuity in the CEF of the treatment variable,
the regression kink design exploits a kink in the CEF of a continuous
treatment (i.e. a discontinuity in the first derivative)

I A corresponding kink in the distribution of the outcome variable suggests
the presence of a treatment e↵ect
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Regression Kink Design

I Suppose the treatment of interest is a deterministic function of the
running variable:

Si = b (Ri )

I Here b(·) is a continuous function with a kink at c

I Example (Card et al., 2015): Unemployment benefit is a kinked function
of past earnings

I Let fi (s) denote i ’s potential outcome as a function of the treatment.
The observed outcome is

Yi = fi (Si )
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Regression Kink Design

I Then under mild regularity conditions:

lim
r!c+

dE [Yi |Ri=r ]
dr � lim

r!c�
dE [Yi |Ri=r ]

dr

lim
r!c+

b0(r)� lim
r!c�

b0(r)
= E

⇥
f 0i (Si )|Ri = c

⇤

I The ratio of the discontinuity in the outcome derivative to the discontinuity in
the treatment derivative identifies the average marginal e↵ect of treatment for
individuals at the threshold

I As before, the key assumption is that potential outcomes are smooth around the
threshold – any kink in the outcome CEF must be due to the treatment

I Diagnostics: Look for kinks in covariate distributions, or bunching in the density
of Ri

I As with RD, we can generalize RKD to a “fuzzy” scenario where the treatment
is not a deterministic function of Ri , but E [Si |Ri ] is kinked at Ri = c

I Can be implemented via local polynomial regression with the analogue of the IK
bandwidth and CCT robust CI, automated in rdrobust
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