Tools for Data Science
LF老师的通识课,计算机入门神课,推荐每一个学弟学妹去认真学习
📄 文件目录与下载¶
- 📄 Makefile
- 📁 P01-Python-from-Scratch
- 📄 L01.1-Introduction-to-Python-for-Economists-and-Statisticians.ipynb
- 📄 L01.1-Introduction-to-Python-for-Economists-and-Statisticians.slides.html
- 📄 L01.2-Python-from-Scratch.ipynb
- 📄 L01.2-Python-from-Scratch.slides.html
- 📄 L01.3-Python-Functions-and-Modules.ipynb
- 📄 L01.3-Python-Functions-and-Modules.slides.html
- 📄 mycollections.py
- 📁 P02-Python-Data-Structures
- 📄 L02.1-Python-Builtin-Data-Structures.ipynb
- 📄 L02.1-Python-Builtin-Data-Structures.slides.html
- 📄 L02.2-Data-Wrangling-with-Pandas.ipynb
- 📄 L02.2-Data-Wrangling-with-Pandas.slides.html
- 📄 L02.3-Manipulating-DataFrames-with-Pandas.ipynb
- 📄 L02.3-Manipulating-DataFrames-with-Pandas.slides.html
- 📁 data
- 📁 AIS
- 📄 transit_segments.csv
- 📄 vessel_information.csv
- 📄 baseball.csv
- 📄 cdystonia.csv
- 📁 microbiome
- 📄 MID1.xls
- 📄 MID2.xls
- 📄 MID3.xls
- 📄 MID4.xls
- 📄 MID5.xls
- 📄 MID6.xls
- 📄 MID7.xls
- 📄 MID8.xls
- 📄 MID9.xls
- 📄 metadata.xls
- 📄 microbiome.csv
- 📄 microbiome_missing.csv
- 📄 nashville_precip.txt
- 📄 titanic.xls
- 📄 vlbw.csv
- 📁 P02-Python-Data-Structures 2
- 📁 P03-Data-Visualization-with-Python
- 📄 L03.1-Pandas-Data-Visualization.ipynb
- 📄 L03.1-Pandas-Data-Visualization.slides.html
- 📄 L03.2-Statistical-Data-Visualization.ipynb
- 📄 L03.2-Statistical-Data-Visualization.slides.html
- 📄 L03.3-Interactive-Data-Visualization.ipynb
- 📄 L03.3-Interactive-Data-Visualization.slides.html
- 📁 data
- 📄 anagrams.csv
- 📄 anscombe.csv
- 📄 attention.csv
- 📄 brain_networks.csv
- 📄 car_crashes.csv
- 📄 diamonds.csv
- 📄 dots.csv
- 📄 earthquakes-23k.csv
- 📄 exercise.csv
- 📄 flights.csv
- 📄 fmri.csv
- 📄 gammas.csv
- 📄 gapminderDataFiveYear.csv
- 📄 geyser.csv
- 📄 iris.csv
- 📄 mpg.csv
- 📄 penguins.csv
- 📄 planets.csv
- 📄 taxis.csv
- 📄 tips.csv
- 📄 titanic.csv
- 📁 P03-Data-Visualization-with-Python 2
- 📁 P04-Python-for-Finance-Tasks
- 📄 L04.1-Reading-and-Cleaning-Excel-Files.ipynb
- 📄 L04.1-Reading-and-Cleaning-Excel-Files.slides.html
- 📄 L04.2-Groups-and-pivot-tables.ipynb
- 📄 L04.2-Groups-and-pivot-tables.slides.html
- 📄 L04.3-Strings-and-Custom-Functions-in-Pandas.ipynb
- 📄 L04.3-Strings-and-Custom-Functions-in-Pandas.slides.html
- 📁 data
- 📁 P04-Python-for-Finance-Tasks 2
- 📁 P05-Modeling-with-Python
- 📄 L05.1-Fundamental-Modules-for-Statistical-Modeling.ipynb
- 📄 L05.1-Fundamental-Modules-for-Statistical-Modeling.slides.html
- 📄 L05.2-Python-for-Statistical-Modelling.ipynb
- 📄 L05.2-Python-for-Statistical-Modelling.slides.html
- 📁 data
- 📁 P05-Modeling-with-Python 2
- 📁 P06-Python-and-Text-Processing
- 📄 L06.1-Python-and-Texts.ipynb
- 📄 L06.1-Python-and-Texts.slides.html
- 📄 L06.2-Natural-Language-Processing-with-Python.ipynb
- 📄 L06.2-Natural-Language-Processing-with-Python.slides.html
- 📄 L06.2-Python-and-Text-Processing.slides.html
- 📄 L06.3-Text-Feature-Extraction.ipynb
- 📄 L06.3-Text-Feature-Extraction.slides.html
- 📄 L06.4-Chinese-Text-Processing.ipynb
- 📄 L06.4-Chinese-Text-Processing.slides.html
- 📁 data
- 📁 P06-Python-and-Text-Processing 2
- 📁 P07-Web-Scraping-with-Python
- 📄 L07.1-Web-Scraping-with-Python.ipynb
- 📄 L07.1-Web-Scraping-with-Python.slides.html
- 📄 L07.2-Interactive-Scraping-with-Selenium.ipynb
- 📄 L07.2-Interactive-Scraping-with-Selenium.slides.html
- 📁 data
- 📁 examples
- 📁 scrapywithbs4
- 📄 baidu_details
- 📄 baidu_list
- 📄 cloud1.jpg
- 📄 cloud2.jpg
- 📄 detail_crawler.py
- 📄 list_crawler.py
- 📄 newsDetails
- 📄 newsList
- 📁 wikiPythonTable
- 📄 output.csv
- 📄 scrapy.cfg
- 📄 table.csv
- 📄 wiki.csv
- 📁 wikiPythonTable
- 📄 init.py
- 📄 feedexport.py
- 📄 items.py
- 📄 pipelines.py
- 📄 settings.py
- 📁 spiders
- 📄 init.py
- 📄 table.py
- 📄 tableSpider.py
- 📁 wikiSpider
- 📄 mytitle.csv
- 📄 scrapy.cfg
- 📄 wiki.csv
- 📁 wikiSpider
- 📄 init.py
- 📄 items.py
- 📄 middlewares.py
- 📄 pipelines.py
- 📄 settings.py
- 📁 spiders
- 📄 init.py
- 📄 articleSpider.py
- 📄 title.py
- 📁 P07-Web-Scraping-with-Python 2
- 📁 P08-Advanced-Topics
- 📄 L08.1-Probabilistic-Language-Modeling.ipynb
- 📄 L08.1-Probabilistic-Language-Modeling.slides.html
- 📄 L08.2-Automated-ARIMA-Forecasting-with-Python.ipynb
- 📄 L08.2-Automated-ARIMA-Forecasting-with-Python.slides.html
- 📁 data
- 📁 TS01-Time-Series-Forecasting-Intro
- 📄 L01-Time-Series-Data-Mining-Intro.ipynb
- 📄 L01-Time-Series-Data-Mining-Intro.slides.html
- 📁 data
- 📁 figures
- 📁 TS01-Time-Series-Forecasting-Intro 2
- 📁 TS02-Time-Series-Decompositions
- 📄 L02-Time-Series-Decompositions.ipynb
- 📄 L02-Time-Series-Decompositions.slides.html
- 📁 data
- 📁 TS02-Time-Series-Decompositions 2
- 📁 TS03-ARIMA
- 📁 .ipynb_checkpoints
- 📄 L03-ARIMA.slides.html
- 📄 L03-Model-Selection-and-Seasonal-ARIMA.slides.html
- 📄 L03.1-ARIMA.ipynb
- 📄 L03.2-Model-Selection-and-Seasonal-ARIMA.ipynb
- 📁 data
- 📁 TS03-ARIMA 2
- 📁 TS04-Forecasting-Combinations-and-Forecasting-Uncertainty
- 📄 L04-Forecasting-Combinations-and-Forecasting-Uncertainty.ipynb
- 📁 data
- 📁 figures
- 📄 beans.jpeg
- 📄 puzzle.png
- 📁 TS05-Time-Series-Anomaly-Detection
- 📄 L05-Time-Series-Anomaly-Detection.ipynb
- 📁 data
- 📁 figures
- 📁 TS05-Time-Series-Anomaly-Detection 2
- 📁 TS06-Large-scale-time-series-forecasting-with-applications
- 📄 TS06-Large-scale-time-series-forecasting-with-applications.pdf
- 📄 setup_rise.py